
大数据时代,为什么我们需要寻找“数据侠”?
当我们在谈论大数据的时候,我们在谈论什么?人们希望通过分析大数据,更了解过去发生了什么、现在正在流行什么、未来会怎样,希望数据能为人们所用,给企业发展以决策依据,给政府政策以公共价值,给普通人以启发。
2016年6月3日,第一财经旗下数据新媒体DT财经和上海开放数据创新应用大赛(SODA)联合举办“寻找数据侠”活动,正式宣布启动“数据侠”计划。这也是今年上海开放数据周的第一场重磅活动。
参加当天活动的“数据侠”嘉宾,分别在各自的领域都是数据分析和可视化的大牛。他们分别来自:交大复杂网络控制实验室(SODA大赛上一届冠军团队)、清华同衡城市数据实验室、地理大数据服务商GEOHEY、感知城市数据科学研究院、北京腾云天下科技有限公司(TalkingData)、镝次元数据传媒实验室、阿里云、蚂蚁金服、同济大学设计与创新学院以及第一财经商业数据中心。
大数据变革的时代,人们面前呈现同样的技术壁垒:使用产品和服务的时间多、接触背后数据的机会少,利用工具对数据进行分析、决策更是难上加难。普通民众和大数据之间似乎总隔着一层屏障。
侠者,助人之人也。他们希望,能够召唤整个行业中最会玩数据、最有数据开发能力和技术的Geek们,对冰冷的数字进行深度挖掘和呈现,使之具有温度,再开放给公众,让每一个普通人能够共享大数据的红利。
2016年夏季,上海开放数据创新应用大赛(SODA)将启动今年的赛事。SODA从政府手中取得了大量与城市生活息息相关的数据,开放给参赛者,让数据侠们通过对数据的深度理解、增值开发和创新应用,来解决城市中的问题,服务于城市中的每一个人。
DT财经,第一财经与阿里巴巴合力打造的数据新媒体,接触着整个行业第一手的数据,描绘着商业时代数据和消费云图,探索着数据如何推动商业的发展。如今,通过轻松易读的卡片式新闻创作形式、PGC(专业生产内容)讲述数据与现实之间的故事、可视化创作、多渠道分发……DT财经已经让更多的人站在数据的角度看商业,用新闻的方式解读数据,让数据有了温度。
而SODA和DT财经联手,正是开放数据的两端:SODA负责从政府手中调取最原始、最权威的数据,而DT则负责将数据呈现出的价值以最符合传播学规律方式分享出去——只是,这当中还欠缺最关键的一环:谁来调取、分析这些数据,谁来制作面向公众的开发工具?他们想到了更加具有专业主义的数据侠们。
在交通领域,数据侠们可以通过交通信息工程和通信技术,有效地分析交通数据,更好地减少交通负荷和环境污染、保证交通安全、提高运输效率;在体育领域,数据侠们可以通过分析运动员的运动表现数据,提供比赛分析决策,乃至避免伤病;在医疗健康领域,“可穿戴设备”已经收集到人体生理数据,自动传入云端,进行数据分析与处理,与医生诊断结合,给出诊断或康复建议……
中国工业设计研究院副总裁张柏军表示:“通过开放数据周和‘寻找数据侠’计划,期望能够有更多的人群了解开放数据的理念,了解现有的开放数据资源,并在力所能及的情况下可以尝试开放流通自有的数据资源。我们也希望更多的普通市民能够在此次活动周中,学习到数据相关的知识,掌握一定的技术,从而能够以城市主人翁的身份对这座城市给予更多的关注,利用开放的数据和数据侠们一起来共建上海,让这座城市更美好。”
DT财经主编王小乔表示:“数据侠们更专业,数据到了他们手里才能被更加精准、稳妥应用,但产生出的价值往往难以传送到普通人手中。而DT财经能够提供的,正是这样一个开放的平台和多渠道的分发。”她希望此次的“寻找数据侠”活动,能够网罗各路对数据有研究、有兴趣、有独特见解的人,让他们自由生产对数据的各种观点与看法。
DT财经将会以开通专栏的形式,为数据侠的优质内容提供各个新媒体平台的传播渠道。未来还会不定期的为数据侠们创造线上线下的交流平台。总之,通过持续提供优质的数据化内容,让数据有温度,更加人性化,为用户提供一个有价值有温度的数据内容入口,从而开放数据解释权,打破数据鸿沟。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08