
核算大数据真实成本
大数据的“4V”理念volume、variety、velocity(容量、类型和速度)、value(在前三者基础上实现收集、存储、管理、分析而产生的数据价值)已经获得市场认可,正在赢得更多的商业价值。但问题也随之而生。如此广泛的定义意味着不同的需求,不同参与者带来的不同界定。比如,volume方面,不同的组织定义显然不同。有些人认为,在相关BI环境中或其他系统中,超过10TB需要决策的数据就可以称为大数据,而另一些人认为至少要到PB。velocity也是如此。数以亿元的记录流入到企业内部和外部传输中。但是每个业务情况完全不同,不仅是规模和传输角度,还有商业用例和需求也不同。比如一个大银行大数据的问题显然与电商或航空公司完全不同。再如对比医院试图收集并分析所背有传感器的病人的数据,显然也与来自公共事业供应商运行智能电网或电信运营商完全不同。是的,即使是被归类于机器生成或者原始数据,但这些数据类型并不相同,更不用说数量或者增长速率。但是他们也有唯一的一个共同特点,在上述所有行业中每个人的数据都需要长期保存,即使是最为细节数据也不能随意丢弃。
重新分配的预算
在如今的经济环境下,企业显然不会投入新的预算给到大数据,最可能的方案,是将现有IT预算重新分配。比如将原先分配在传统数据仓库或者设备上的预算调配到成本更低、更易于扩展的开源项目上,比如能够为管理和分析数据集提供最优方案的Hadoop架构等。而这样带来的问题是如何将新的Hadoop系统与旧有的更受喜爱和支持的BI或DW环境相整合或者并存?
新旧系统兼容并不容易
假设下你已经有了一个数据仓库或者数据集市,并已经开始使用各种ETL或数据移动工具及BI仪表盘,分析和报告工具,那么你肯定不想打扰那些不仅担心影响性能水平而且需要培训新工具培训的商业用户。
但事实是,针对各类商业报告和KPI,长期以来你已经习惯依赖于严格的SLA。但是,在同一时间,业务需要获得新的数据集,以便获得更好的分析,无论是直接数据源还是混合现有的客户数据。也许是来自各种互动网站的网络日志,点击流数据或社会媒体的数据被利用并且用来追踪。事实上,在追求利润和竞争优势的环境中,这样的数据竞争是无法避免的。
我们都知道,传统的关系型或柱状数据库不能处理非结构数据库类型,所以需要不同的解决方案来满足这方面的业务需求。也许有多种形式,但是在开始的时候,更多还是选择Hdoop架构,NoSQL或NewSQL数据库,以及除了MapReduce之外的一些查询工具。这不是很容易的事情,因为市场上现在有相对多的技术方案。这些方案往往声称可以在Hadoop中运行或提供类似MapReduce或者SQL-like的能力的来管理大量非结构化数据。有些是比较成熟的,但是也有些并非所标榜的低成本。开源表面上看成本较低,但是往往需要一定程度的支持,这也是为什么商业环境很重要的原因,而这些投入显然需要预算。大数据并非一个项目,其包含为了满足业务需求而正确部署大数据的所有组件。就像其他IT换将中所包含的一样:软件许可和支持、硬件资源、专业技能、专业服务以及培训和特定时间段企业用户对于输入关键要求如指定类型的报告、查询、分析等在不同时间内的需求的变换。
大数据成本快速转变
从大数据集的硬件支出管理方面来看,最初可能只需要10节点的Hadoop集群,但是如果你对数据速度要求很高,那么这个集群会很快增加到100+节点。届时,你需要面对的是大量的支出:额外的人员和技术资源用以管理整体环境,比如系统管理及监控,通过不同业务系统而来的附加软件,管理集群的工具等。但是如果需要对数据流进行实时分析,要检测欺诈或有不同寻常的地方,则需要一个商业工具来提供前端GUI控制台来跟踪特殊的KPIs或者数据可视化工具。这样商业用户可以很快了解相关情况,将重点放到通过最新收集的数据带来更多价值,减少非重点数据带来的存储硬件与软件的成本。
不可否认,大数据带来了新的机遇,这一点在一个量化的ROI中仍然是一个非常现实的挑战。每个人都在谈论如何通过大数据和创新技术来获得成功,但是相关成功案例并不多见。也许大数据并不成熟,但是好消息是,其发展速度比IT历史上的任何其他项目都快,这也受益于在过去的20年里,数据仓库和BI已经积累了足够的经验和教训。
以案例审核应用
想要更仔细地审查大项目主要应用领域,最好是通过特定的业务类型与案例。 以大型金融机构为例,其已经拥有了一批传统的数据仓库和BI系统,由于金融不能丢弃任何数据(法令法规对其的要求),但现在企业希望对特定的数据集进行目前形势下的趋势分析。如审查问题,“在特定时间段内,什么构成了低风险客户的消费模式(可参照消费者特征)”以帮助企业在细分市场获得更好的业绩。
显然,IT预算不会随着数据的增长而增长,相反,很大程度上需要降低成本,为此,很多企业选择了拥有更低组建成本,并可深入了解客户应用模式,捕捉半结构和非结构数据的Hadoop平台。前端数据仓库采用专用的Hadoop集群是首选方案,但是很多商业用户仍然希望能够同时通过Hdaoop环境和现有的传统数据仓库环境来访问。鉴于我们谈论的是金融机构,对有效性和安全性的要求都最高。要实现更多新需求,就需要更多技能和尽量避免重复工作。
下面是一个关于主要成本因素和评论集的快速表,可以帮助用户降低成本:
大数据基本上是一个商业问题。在你开始思考“什么业务能帮助企业收集、存储和分析新的数据集等”,就已经踏上了应用之路。无论你是否考虑主动引入外部顾问还是供应商来做相关项目,都要面对与现有环境相融合等问题。此外,大部分方案商都爱承诺,但新的创新技术包括Hadoop和MapReduce是否能够达到你的测试标准,是否可以与现有系统融合,都是问题。我们都知道,商业客户购买仅代表了成功的一半,而另一半是部署。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15