
大数据发展的5条趋势
近几年,大数据已经从大公司独有的流行词和概念变成了驱动我们数字生活发展的动力。下面是未来大数据的处理和发展的五个趋势。
1.数据科学越来越大众化
随着像Coursera、Udacity和Edx等这些和数据分析相关的网络教育平台的流行,越来越多的人不用花一分钱便可以学到所有的知识,从基础的统计学知识到自然语言处理和机器学习。除了这个,Oxdata化简和集成了R语言后推出的分析产品,Quid正在做的具有机器学习和人工智能概念的工具也设计了傻瓜式的使用界面和形象具体的用户展示方法。更有像Kaggle这样的公司推出了关于预测模型的众包平台。所以大数据的处理的趋势之一便是像Datahero,Infogram和Statwing他们一样,把数据分析变得易用,大众。
2.Hadoop对MapReduce的依赖越来越小
Hadoop平台只为MapReduce服务的时代从Hadoop的2.0版本开始正式结束了。新版本支持的产品和服务将会和Cloudera的Impala一样用一个SQL 查询引擎,或者其他的方法来替代MapReduce。HBase NoSQL数据库就是Hadoop离开MapReduce约束后的一个很好的例子。 大型的网络公司,像Facebook、eBay等都已经用HBase去处理事务型的应用了。
3.大数据越来越多的被用到了我们身边的应用中
首先是大数据应用对我们的开发者的要求变低了,有时候开发大数据应用就像在你的应用的代码中加入几行,或者像是写一段儿脚本一样。其次,大数据的应用范围也得到了拓展,用户习惯分析,网络安全,人工智能,售后服务等等都可以通过将大数据处理做成产品或者应用而实现。现在的大数据技术已经被带入了许多网络和手机的应用中,从购物推荐到找到和自己有关联的人等等。
4.机器学习无处不在
很容易就可以看到机器学习越来越流行,从我们身边的小应用Prismatic、Summly、Trifacta、CloudFlare、Twitter、Google、Facebook、Bidgely、Healthrageous、Predilytics、BloomReach、DataPop、Gravity……如今很难想象一个没有机器学习技术的科技公司可以生存。Heck,甚至是微软都在机器学习上下了很大赌注它将成为一个重要的收入来源。
5.手机将成为人工智能的数据来源
我们的手机和手机中的应用目前可能是最大的私人信息来源。通过机器学习,语音识别和其他一些技术,这些应用可以知道我们去哪儿,我们的朋友都是谁,我们的日历上都有哪些提醒,我们上网都浏览什么。通过新一代的私人助理应用(Siri,Saga和Google Now等)我们的手机更能够理解我们的言论,知道我们经常出入的地方,我们平时吃什么,我们在家、工作和郊游的时间等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29