京公网安备 11010802034615号
经营许可证编号:京B2-20210330
玩转大数据,你需要了解这8种项目类型!
在过去的 12 个月里,笔者一直在大数据的战壕里挖掘。好吧,其实大部分时间我只是坐在比我更聪明的人旁边,看他们怎么在战壕里挖掘数据,再把所做的事情进行简化以上报给管理层。
很少有真正独具一格的 IT 项目,那些听起来比较特别的项目最终也只是大同小异。不过你们今天有眼福了,因为我决定出来冒个泡儿,跟大家分享一下过去 12 个月里接触到的8大项目类型。
那些做电子商务的公司想当然地认为,装几个工具就能掌握网页访客从销售到付款的成交情况。但是很多公司处理的数据集远远不止网页成交率,而且这些数据集主要来自经销商。
每个经销商提供格式各异的不同数据集。当然,从根本上说,这是一个带有BI/可视化前端的核心ETL/数据整合项目。但是,对许多公司而言,要真正了解交易的生命周期(从开始、进展到结束)比想象中要困难。你需要整合大量的 CRM 数据、网站分析数据和财务数据,最后才能肯定地说:“是的,PPC(点击付费广告)带来了交易,但是40%的客户连第一笔交易都未能成功走到付款,那么……”
很多公司都想知道你在做什么,然后再根据你的活动情况向你推销产品。例如,你手机上可能装了一个提供遥测数据的 app,这样公司就会知道你在商场的哪个位置。凭借这些大数据,他们就能预测你在任意时刻的购买需求。
营销人员做事讲求效益,他们想知道具体要做哪些事情,以及这些事情对KPI有何影响。从本质上说,这又是一个 BI 项目,而且往往涉及到大量的变更数据捕获(CDC)和 ETL 数据整合工作。他们测量的实际KPI变化很大,有时还涉及到 Kylin 或 Greenplum 等工具中的数据库。至于其他情况,可能属于下一个类别——社交媒体。
通常,公众会在公开或半公开的社交网络上谈论你(或你的公司)。在这些地方你可以获取很多有用的信息,比如大家怎么看待你的品牌,你的营销活动是否有成效。既然美国地震勘探局可以通过 Twitter 探测到地震和震级,那么你也可以通过这样的平台了解刚推出的广告活动效果如何。随着越来越多的专业社交平台出现,对于某些垂直行业而言,其数据采集范围远远不止 Twitter 和 Facebook。
无论是为了入侵检测还是应对安全审计,你都需要捕获并收集日志文件并使其可检索。在这一领域,Splunk 无疑大赚了一笔。当然,在大数据中还有其他更灵活的选择。
现在已经不是 Teradata 独统天下的时代了,大数据正在从边缘向核心发展,而且 Apache Kylin 的数据库已对所有人开放。得益于 Impala、HAWQ 和 Greenplum,MPP 分布式系统的地位也更加重要。那些价格昂贵、功能单一而且还不能兼容其他数据分析的工具,其发展空间越来越小——更别说是那些只能依靠某单一供应商的私有云。
ETL (Extract-Transform-Load)可能依旧是如今最常见的Hadoop工作负载——而且我敢说,ETL 是适用于 Spark 的最常见的非流式工作负载。顺便提一下,现在已经有上百个创业公司冒出来说自己能够处理这种任务了。
不管是电网、制造业、水泵,还是老司机开的车,都在向我们传递信息。这些信息都需要捕获。甚至有些人已经弄清了该如何处理这些数据。但是,及时捕获数据才是最重要的一步,因为很多人都觉得从技术上来说捕获数据并不那么容易。
此外,笔者还经常督促大家在大数据项目初期就要考虑数据分析问题。为什么呢?因为预先设计并确定好数据流的大小,远比数据已经准备好时再重新考虑整体布局要容易得多。但是有时候还是得细细咀嚼,做最好的打算。
近一年来,笔者见过不少其他项目类型,但是大多数用例都属于以上八种之一。不知各位老司机是否还有补充?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23