
玩转大数据,你需要了解这8种项目类型!
在过去的 12 个月里,笔者一直在大数据的战壕里挖掘。好吧,其实大部分时间我只是坐在比我更聪明的人旁边,看他们怎么在战壕里挖掘数据,再把所做的事情进行简化以上报给管理层。
很少有真正独具一格的 IT 项目,那些听起来比较特别的项目最终也只是大同小异。不过你们今天有眼福了,因为我决定出来冒个泡儿,跟大家分享一下过去 12 个月里接触到的8大项目类型。
那些做电子商务的公司想当然地认为,装几个工具就能掌握网页访客从销售到付款的成交情况。但是很多公司处理的数据集远远不止网页成交率,而且这些数据集主要来自经销商。
每个经销商提供格式各异的不同数据集。当然,从根本上说,这是一个带有BI/可视化前端的核心ETL/数据整合项目。但是,对许多公司而言,要真正了解交易的生命周期(从开始、进展到结束)比想象中要困难。你需要整合大量的 CRM 数据、网站分析数据和财务数据,最后才能肯定地说:“是的,PPC(点击付费广告)带来了交易,但是40%的客户连第一笔交易都未能成功走到付款,那么……”
很多公司都想知道你在做什么,然后再根据你的活动情况向你推销产品。例如,你手机上可能装了一个提供遥测数据的 app,这样公司就会知道你在商场的哪个位置。凭借这些大数据,他们就能预测你在任意时刻的购买需求。
营销人员做事讲求效益,他们想知道具体要做哪些事情,以及这些事情对KPI有何影响。从本质上说,这又是一个 BI 项目,而且往往涉及到大量的变更数据捕获(CDC)和 ETL 数据整合工作。他们测量的实际KPI变化很大,有时还涉及到 Kylin 或 Greenplum 等工具中的数据库。至于其他情况,可能属于下一个类别——社交媒体。
通常,公众会在公开或半公开的社交网络上谈论你(或你的公司)。在这些地方你可以获取很多有用的信息,比如大家怎么看待你的品牌,你的营销活动是否有成效。既然美国地震勘探局可以通过 Twitter 探测到地震和震级,那么你也可以通过这样的平台了解刚推出的广告活动效果如何。随着越来越多的专业社交平台出现,对于某些垂直行业而言,其数据采集范围远远不止 Twitter 和 Facebook。
无论是为了入侵检测还是应对安全审计,你都需要捕获并收集日志文件并使其可检索。在这一领域,Splunk 无疑大赚了一笔。当然,在大数据中还有其他更灵活的选择。
现在已经不是 Teradata 独统天下的时代了,大数据正在从边缘向核心发展,而且 Apache Kylin 的数据库已对所有人开放。得益于 Impala、HAWQ 和 Greenplum,MPP 分布式系统的地位也更加重要。那些价格昂贵、功能单一而且还不能兼容其他数据分析的工具,其发展空间越来越小——更别说是那些只能依靠某单一供应商的私有云。
ETL (Extract-Transform-Load)可能依旧是如今最常见的Hadoop工作负载——而且我敢说,ETL 是适用于 Spark 的最常见的非流式工作负载。顺便提一下,现在已经有上百个创业公司冒出来说自己能够处理这种任务了。
不管是电网、制造业、水泵,还是老司机开的车,都在向我们传递信息。这些信息都需要捕获。甚至有些人已经弄清了该如何处理这些数据。但是,及时捕获数据才是最重要的一步,因为很多人都觉得从技术上来说捕获数据并不那么容易。
此外,笔者还经常督促大家在大数据项目初期就要考虑数据分析问题。为什么呢?因为预先设计并确定好数据流的大小,远比数据已经准备好时再重新考虑整体布局要容易得多。但是有时候还是得细细咀嚼,做最好的打算。
近一年来,笔者见过不少其他项目类型,但是大多数用例都属于以上八种之一。不知各位老司机是否还有补充?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01