京公网安备 11010802034615号
经营许可证编号:京B2-20210330
业务问题中数据分析的基本流程
“数据分析狮”的数据分析流程/步骤 数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至认为是一种方法观。作为一名普通“数据疯嘻狮”,这里所说的数据分析是一个相对狭义的概念,如果你是一个业务人员,你可以将之理解为业务分析。
【1】明确目的
从监测角度来说,业务问题一般以两种方式出现。第一种是在长期监测中发现某一环节运行异常,另外一种是在开展业务任务时即时遇到阻碍。不管怎么样,问题摆在面前需要解决。
在数据分析开始前,必须明确要分析什么,要解决什么问题,一项数据分析,不是一蹴而就,需要过程,如果不能做到有的放矢,多半会导致分析方向发生偏移,盲目无序的开头将导致后续的工作白白浪费。
发生了什么?为什么要这样做?要得到什么?如何得到?等等这些问题需要在分析之前弄清楚。只有先明确了目的,对数据分析的主要内容有针对的了解,才能作出合理有效的解决方案。
【2】获取数据
按照数据分析目的、内容收集所需数据,此时最重要的是保证获取数据的真实可靠性。这些数据源就像盖房子打地基,没有这个基础,不管采用多么高级的分析方法都是白费力气。另外,不要过于期望一口气将所有数据都采集全,在预处理和数据分析阶段你可能会发现还缺少某一部分数据源,这是反馈调节的过程。
【3】预处理
现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量,这些过程看似简单却非常有必要!
仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺少、描述统计指标进行一定程度的分析。
【4】数据分析
在这个阶段建议采用简单有效的分析方法,切记不要“为了分析而分析”。数据分析方法有很多种,不一定越是高级的方法就越有效。数据分析的工具也一样,能用Excel就不用SPSS,只要能解决问题即可。如果可以合理选择有效驾驭,那选用一些高级的方法和工具炫一下也非常可以理解,人非圣贤,谁没有个七情六欲呢?
和“获取数据源”阶段一样,这两个过程都是费力不讨好的。数据分析整个项目的大部分时间都花在这两个阶段上。而且伴有枯燥、沮丧、焦虑等心态,不断调整自己的心态也是这两个阶段的重点和关键。
【5】提交报告
做一个数据分析的项目,不能不下结论!
雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,对业务问题进行及时解决,养成这个良好的习惯。数据分析报告采用PPT格式、Word格式都可以,做到结构合理、结论坚定,图文并茂。
这个阶段切记不要搞得太花哨,语气低调不要太夸张。有自己的结论,有自己的观点,能有效解决问题,并针对类似问题进行监控,防止再次发生。
总之一句话,诚实、务实、创新、低调是一个数据分析师需要具备的素质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22