
传统零售企业如何受益于数据分析
线下企业只要能够利用好一些线下数据, 如门禁数据, 视频监控数据, POS数据等, 一样也可以通过数据分析来提高运营效率或者减少运营成本。
我们在《七问大数据:企业真的准备好了》一文中提到:“其实, 中小企业也应该认真考虑他们的大数据战略了。 如果他们有网站, 他们也能够产生大量的数据。 即使没有网站, 其实,每天摄像头里产生的数据,如果能利用好, 也有足够的分析价值。”
传统企业能否像电子商务网站一样对实体店面的“访客”进行数据采集和分析?答案是肯定的,而且这方面的技术已经趋于成熟。
一提到大数据和数据分析, 人们首先想到的是Google, Facebook,等互联网公司, 或者是亚马逊, 淘宝等电子商务公司。的确, 相对传统的线下企业, 互联网企业和电子商务企业, 在数据的采集, 业务流程的自动化方面, 确实更容易实现数据分析。 不过, 随着更多的传统零售企业越来越开始注重网络。这些零售企业也开始更加重视多渠道的销售策略。 目前来看, 在多渠道的零售企业中, 线上部分的增长率都要高过线下部分。 而往往线上部分的数据分析所带来的效益, 也促使零售企业在线下业务也开始更加重视数据分析的作用,并促成了对传统线下数据的崭新应用。
线上电子商务企业的数据来源很丰富, 他们可以衡量用户的一切行为,包括用户数量, 独立访问用户, 用户回头率, 点击率, 转化率、客单价等等。 甚至不同产品在网页不同位置的点击率和转化率等等。 而传统零售业则不同了, 它们的主要数据来源就是POS机的数据。 主要是各类交易数据。 包括购买品种, 购买数量等等。 而对于用户行为来说,线下零售企业掌握的数据相比线上电子商务网站少得可怜,原因是线下的用户行为都是“模拟”的,无法量化分析。
不过, 如今, 随着一些新技术的采用, 线下零售企业也可以获得比过去丰富的多的用户行为数据。比如, ShopperTrak公司, 就帮助它的零售企业客户进行用户进入店铺路径的监测。 根据公司CEO Jan Davis介绍, 这项技术已经非常成熟了:
有很多零售商通过购买访客流量监控的设备和服务, 已经能把用户转化率从低于10% 提高到50%以上。 如果结合POS数据,有的零售点甚至能够做到接近100%的用户转化率。
而且, 通过对“高峰时段“的分析, 很多零售店可以安排分配店内员工工作时间,或者在不同店面之间进行员工调配。
例如, 有一家店铺, 共有四个门。 原来, 店长认为客户从每个门进出是随机的,平均的。 而通过加装了用户监测系统, 他们发现, 用户从某两个门进的比较多, 而从另外两个门出去的比较多。 因此, 他们根据用户进店的流量重新调整了货品摆放,并且把那两个用户出去比较多的门前增加了结帐出口。
不仅如此, 这个店铺的客户监测统计还帮助店长确定了“强力时段“,即客户进店到转化为购买用户的转化率最高的时段。 店里根据这些, 安排更多的店员, 在“强力时段”前把货架的货尽量摆好, 并尽可能帮助客户从货架拿货。 通过这些措施, 使得这个店的用户转化率和单店销售都比以前大大提高了。
其实, 对于数据分析来说, 并不一定非要互联网企业才可以做。类似这样的线下企业, 只要能够利用好一些线下的数据, 如门禁数据, 视频监控数据, POS数据等。 一样也可以通过数据分析来提高运营效率或者减少运营成本,数据分析其实是无处不在的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07