京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师:数据变现三步曲
最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益。很多朋友都知道,有技术、熟悉业务是前提,但有了前提,也常常困惑于各种迷惑,数据到底被业务用了么,业务用了效果不好的话,问题出在哪里?
本文打算通过一些经验之谈,阐述“数据变现”基本准则(个人推荐),希望抛砖引玉,能引起更多人思考、讨论。
数据变现前提准备
数据变现首先得有清洗、整理、及时、准确的数据,以及科学的数据分析方法和手段;然后得有业务的熟悉程度,包括业务流程、业务运作方法和运营难点、业务解决方案等等。有了前提,再说如何把数据变现为价值。
数据的准备、分析方法自不用多说,大家已经讨论N多遍了。这里主要讨论对业务的熟悉程度,我们常常提到的业务熟悉,往往只是停留在业务流程、业务数据流的熟悉。例如订单流程,数据流到某个状态才转ERP让物流拣货。直到现在,很多数据分析人还是认为这样的就叫熟悉业务了。
我曾经做过的大促分析,经过当天每小时流量、订单、库存,结合商品分布、用户分布,准确诊断大促不足的地方、大促高价值的地方,然后再一次促销中,将数据洞察转换为行动方案。这是因为我熟知业务部门要行动,他们需要了解到底哪些地方要如何改进,改进多少?例如商品部门,你说准备库存结构不合理,那你告诉我到底各SKU准备多少,为什么这样准备?客户部门,你说老客户活跃度激活不够,你告诉我如何做的更好,凭什么说这样才能更好?这些大家觉得仅仅熟悉流程,能给答案推动数据变现么?
充分地洞察和分析
数据要能说话,前提它要能成为说话的“证据”,例如销售增速同比下滑50%,你凭什么说是老客户维护是主要问题,而不是网站产品或者价格问题?
我个人以为这是一个数据分析、洞察融入业务逻辑的推理过程,写出来的分析报告逻辑严密,才能让业务部门信服、使用数据结论和建议。
上一个博文提到的:假设订单转换率由3%下降到1.5%,那么从业务角度,会有哪些可能性?
1、导流出了问题,新的流量来源僵尸用户多?(用户访问习惯性行为判断)
2、推广出了问题,很多用户误点广告(由退出率判断)?
3、网站是否改版,降低了客户体验?(用户行为路径判断)?
4、网站其他问题,例如某些功能比较难用,网站变慢等(用户行为访问节点分析判断)?
5、是否商品突然没有了吸引力,例如商品之前还是大量5-6折的商品引流,现在变成8折为引流了?(通过商品访问深度、商品访问比较分析)
我们每一种可能,都要有“对应”的数据来说明,让业务部门关注或者不关注这个因素,而不是看来数据就算了。你说通过某广告来源来的流量,马上就退出的情况,这不是点错广告,是什么呢?这就是逻辑推理!
和业务充分沟通
这点很重要,也有挑战性,不同公司的企业文化,决定了你沟通的技巧需要有对应,所以你在某企业有沉淀,有人脉了,才更容易沟通,更容易交心。
根据原则,就是首先你的数据分析是来帮助他们的,而不是让他们帮你做数据试验;其次你的业务逻辑非常清晰,让业务觉得和你交流有共同语言,值得交流;最后你确实有成功案例,让业务有动力与你倾力合作。
推动数据驱动执行
交心的沟通后,业务部门甚至可能让你参与业务会议、请你帮忙提业务运作建议。但如果你还没与业务部门达成如此默契,就需要主动看执行结果,如果不够理想,请主动思考什么原因,与业务部门咨询是否有什么困难,缺乏什么条件。
总结
数据驱动失败,可能业务用户执行不到位,但也可能是数据分析漏了什么业务因素,或者数据挖掘算法不够合理,所以BI部门需要多审视自己,而且即便是业务执行不到位所致,请多关注对方是否有不得已的原因,而不是埋怨业务部门不给力,在未来合作中,数据才能更主动发挥价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19