京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代物流信息的机遇与挑战
全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。
物流信息技术跨入大数据时代,物流行业面临着巨大的机遇与挑战。全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
2013年物流行业杀出一匹黑马――菜鸟物流,欲求整合行业,使物流信息实时对接。菜鸟物流的出现是因为市场的向往和中国快递物流需求的飙升。目前,国内物流“三通一达”业务70%来自淘宝天猫,但是淘宝自建物流体系还是要依靠传统物流方式。2014年6月12日阿里巴巴与中国邮政达成战略协作,中国邮政全国相当广泛,最大的优势是仓库,与其达成合作,可以把中国邮政的闲散资源整合起来。中国物流企业在仓库、土地等资源竞争上存在劣势,远远达不到国际化。在这个过程中由于种种原因没有办法建自己的仓库,逐渐这些仓库都被国际物流公司占据,所以我国物流企业未来的空间会越来越少。
另外,IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。最近有一个新概念――“数字工业经济”,认为未来所有公司都将成为IT公司,未来企业发展将走上IT,更准确讲所有公司的预算就是IT预算,所有公司都是IT公司,每个员工都是数字武装起来的。其实,IT最重要的是软件,所有平台、设备最终的灵魂是软件,未来软件和数据中心一样将是大趋势。云计算和大数据都是软件,云计算诠释软件定义,软件即服务,提供给用户服务是服务商运行在云计算的基础。
大数据是什么?大数据就是海量数据,软件是大数据的驱动力、引擎,软件改变世界。大数据把很多不相关的数据通过大数据技术关联、分析,发现之间的关联并得出一个结论,找出一个预测。大数据能为物流做什么?快件量的陡增并没有造成快件大面积延误,大数据可以做。大数据的典型案例就是天猫的“双11”,通过大数据分析“双11”有一个很有意思的现象,浙江收到快件3.5万个,发出11.8万个,没有大数据平台,阿里不可能达到几百亿收入。国外的几大物流公司都已开始用云计算、大数据技术服务企业发展。DHL(中外运敦豪国际航空快件有限公司)是全球最大物流中心之一,他们根据实时情况做到精确取货、交货。联邦快递是世界上最大快递集团之一,可以让包裹主动反馈,使客户任何时间得知包裹情况,实时更新和客户所处的地理位置,使包裹更快速、精确送达到客户手里。UPS(联合包裹服务公司)特有的基于大数据分析,可以实时分析车辆、包裹、用户喜好、送货信息,全程通过GPS跟踪,计划到2017年让每一位司机缩短1英里,增加派送力。
但是,大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。另外,大数据时代没有隐私,隐私跟大数据相互结合,双方不断碰撞,而政府或者部门对大数据的方案有自己的需求,民众对保护个人隐私也在积极争取。在安全层面,我们都认识到信息安全的根本是技术装备的自主可控,目前安全防护在中国取得了巨大成功,国家非常重视数据库、操作系统等领域的自主创新,但真正实现产业化投入市场使用的很少,最重要的问题是产业链问题,数据库整个系统中没有支撑应用的环境。国内目前使用的数据库存储技术,以及上下游产业链技术都是国外开发的,存在壁垒,不兼容国产技术,所以有很大风险,因此只能靠产业竞争,靠市场来逐步发展自主可控的技术。另外,我们对互联网设备进行审查,国家制度很完善,但是执行得并不好,因此应尽快对网络安全立法,才能真正解决网络安全问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08