
大数据时代物流信息的机遇与挑战
全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。
物流信息技术跨入大数据时代,物流行业面临着巨大的机遇与挑战。全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
2013年物流行业杀出一匹黑马――菜鸟物流,欲求整合行业,使物流信息实时对接。菜鸟物流的出现是因为市场的向往和中国快递物流需求的飙升。目前,国内物流“三通一达”业务70%来自淘宝天猫,但是淘宝自建物流体系还是要依靠传统物流方式。2014年6月12日阿里巴巴与中国邮政达成战略协作,中国邮政全国相当广泛,最大的优势是仓库,与其达成合作,可以把中国邮政的闲散资源整合起来。中国物流企业在仓库、土地等资源竞争上存在劣势,远远达不到国际化。在这个过程中由于种种原因没有办法建自己的仓库,逐渐这些仓库都被国际物流公司占据,所以我国物流企业未来的空间会越来越少。
另外,IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。最近有一个新概念――“数字工业经济”,认为未来所有公司都将成为IT公司,未来企业发展将走上IT,更准确讲所有公司的预算就是IT预算,所有公司都是IT公司,每个员工都是数字武装起来的。其实,IT最重要的是软件,所有平台、设备最终的灵魂是软件,未来软件和数据中心一样将是大趋势。云计算和大数据都是软件,云计算诠释软件定义,软件即服务,提供给用户服务是服务商运行在云计算的基础。
大数据是什么?大数据就是海量数据,软件是大数据的驱动力、引擎,软件改变世界。大数据把很多不相关的数据通过大数据技术关联、分析,发现之间的关联并得出一个结论,找出一个预测。大数据能为物流做什么?快件量的陡增并没有造成快件大面积延误,大数据可以做。大数据的典型案例就是天猫的“双11”,通过大数据分析“双11”有一个很有意思的现象,浙江收到快件3.5万个,发出11.8万个,没有大数据平台,阿里不可能达到几百亿收入。国外的几大物流公司都已开始用云计算、大数据技术服务企业发展。DHL(中外运敦豪国际航空快件有限公司)是全球最大物流中心之一,他们根据实时情况做到精确取货、交货。联邦快递是世界上最大快递集团之一,可以让包裹主动反馈,使客户任何时间得知包裹情况,实时更新和客户所处的地理位置,使包裹更快速、精确送达到客户手里。UPS(联合包裹服务公司)特有的基于大数据分析,可以实时分析车辆、包裹、用户喜好、送货信息,全程通过GPS跟踪,计划到2017年让每一位司机缩短1英里,增加派送力。
但是,大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。另外,大数据时代没有隐私,隐私跟大数据相互结合,双方不断碰撞,而政府或者部门对大数据的方案有自己的需求,民众对保护个人隐私也在积极争取。在安全层面,我们都认识到信息安全的根本是技术装备的自主可控,目前安全防护在中国取得了巨大成功,国家非常重视数据库、操作系统等领域的自主创新,但真正实现产业化投入市场使用的很少,最重要的问题是产业链问题,数据库整个系统中没有支撑应用的环境。国内目前使用的数据库存储技术,以及上下游产业链技术都是国外开发的,存在壁垒,不兼容国产技术,所以有很大风险,因此只能靠产业竞争,靠市场来逐步发展自主可控的技术。另外,我们对互联网设备进行审查,国家制度很完善,但是执行得并不好,因此应尽快对网络安全立法,才能真正解决网络安全问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22