
大数据时代物流信息的机遇与挑战
全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。
物流信息技术跨入大数据时代,物流行业面临着巨大的机遇与挑战。全社会物流费用与GDP比例近年来一直徘徊在18%左右,但是市场经济不够规范,部分企业诚信缺失,企业营业能力比较弱,因此,物流行业还有很大提高空间。
2013年物流行业杀出一匹黑马――菜鸟物流,欲求整合行业,使物流信息实时对接。菜鸟物流的出现是因为市场的向往和中国快递物流需求的飙升。目前,国内物流“三通一达”业务70%来自淘宝天猫,但是淘宝自建物流体系还是要依靠传统物流方式。2014年6月12日阿里巴巴与中国邮政达成战略协作,中国邮政全国相当广泛,最大的优势是仓库,与其达成合作,可以把中国邮政的闲散资源整合起来。中国物流企业在仓库、土地等资源竞争上存在劣势,远远达不到国际化。在这个过程中由于种种原因没有办法建自己的仓库,逐渐这些仓库都被国际物流公司占据,所以我国物流企业未来的空间会越来越少。
另外,IT技术应用不足。我国物流体系虽然做得很好,但是跟国际物流相比远远不够。最近有一个新概念――“数字工业经济”,认为未来所有公司都将成为IT公司,未来企业发展将走上IT,更准确讲所有公司的预算就是IT预算,所有公司都是IT公司,每个员工都是数字武装起来的。其实,IT最重要的是软件,所有平台、设备最终的灵魂是软件,未来软件和数据中心一样将是大趋势。云计算和大数据都是软件,云计算诠释软件定义,软件即服务,提供给用户服务是服务商运行在云计算的基础。
大数据是什么?大数据就是海量数据,软件是大数据的驱动力、引擎,软件改变世界。大数据把很多不相关的数据通过大数据技术关联、分析,发现之间的关联并得出一个结论,找出一个预测。大数据能为物流做什么?快件量的陡增并没有造成快件大面积延误,大数据可以做。大数据的典型案例就是天猫的“双11”,通过大数据分析“双11”有一个很有意思的现象,浙江收到快件3.5万个,发出11.8万个,没有大数据平台,阿里不可能达到几百亿收入。国外的几大物流公司都已开始用云计算、大数据技术服务企业发展。DHL(中外运敦豪国际航空快件有限公司)是全球最大物流中心之一,他们根据实时情况做到精确取货、交货。联邦快递是世界上最大快递集团之一,可以让包裹主动反馈,使客户任何时间得知包裹情况,实时更新和客户所处的地理位置,使包裹更快速、精确送达到客户手里。UPS(联合包裹服务公司)特有的基于大数据分析,可以实时分析车辆、包裹、用户喜好、送货信息,全程通过GPS跟踪,计划到2017年让每一位司机缩短1英里,增加派送力。
但是,大数据也有弊端,虽然带来了数据高度集中,但是如果数据毁坏丢失,风险是灾难性且难以承受的。另外,大数据时代没有隐私,隐私跟大数据相互结合,双方不断碰撞,而政府或者部门对大数据的方案有自己的需求,民众对保护个人隐私也在积极争取。在安全层面,我们都认识到信息安全的根本是技术装备的自主可控,目前安全防护在中国取得了巨大成功,国家非常重视数据库、操作系统等领域的自主创新,但真正实现产业化投入市场使用的很少,最重要的问题是产业链问题,数据库整个系统中没有支撑应用的环境。国内目前使用的数据库存储技术,以及上下游产业链技术都是国外开发的,存在壁垒,不兼容国产技术,所以有很大风险,因此只能靠产业竞争,靠市场来逐步发展自主可控的技术。另外,我们对互联网设备进行审查,国家制度很完善,但是执行得并不好,因此应尽快对网络安全立法,才能真正解决网络安全问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08