
数据的输入与输出之READ函数
read.table() 函数
1、用于读入表格(表)类型的数据,同时生成数据框对象。
2、读入的数据要求有规则的分隔符,默认有:空格、TAB、换行符、回车符;其它的分隔符,通过sep=来进行指定。
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown")
例如:
demo_3<-read.table('e:/demo_3.txt',header=T)
read.fwf()函数
1、适用用于读入数据相应没有相应的分隔符,但是读入的数据字段长度是固定长度。
2、数据导入R后,生成列表对象。
读入固定分隔长度的数据;
read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000)
例如:在这个数据中,前面的3个字符与接下来的3个数字表示名称、得分,因为二个字段之间没有分隔符号,但其长度是固定的,所以适合用本函数。
ABC123%$12
TEX124@#12
y o14 @@#
read.fwf('e:/demo_1.txt',widths=c(3,3),col.names=c('name','score'));
w <- readline()函数
1、用于程序的交互,根据输入的条件来判断下一步执行的方向;
2、通过键盘读入一行数据;
例如:根据输入的来判断后续程序的执行流程
Demo_2<-function()
{
input<-readline("DO you think R is hard to learn,Please give your choice:Y or N ")
if(input=="Y")
cat("Come on; Spent more time.\n")
else
cat("Good!")
}
Demo_2()
Readlines() 函数
1、控制读入的数据行数,非批处理,有点类似于数据库中的指标操作,可对文件中的数据逐行操作。2、这个对于读入日志类的数据很有用。例如:通过对读入数据的每行来判断是否有需要的数据,有再对数据进行处理;tips:该数据配合R中的正则表达式相关函数,对于处理不规则的数据很强大。
例如:
1、 与文件demo_1建立连接
con<- file("demo_3","r")
2、指定每次执行只读入一行;
RC<-readLines(con,n=1)
3、关闭联接
close(con)
说明:
1、如果读到文件的最后,则length(RC)=0;EOF文件最后返回的空值。
2、N控制每次读入几行;https://www.cda.cn/
3、当读到最后要重新开始的时间:seek(con=c,where=0),返回当前指标所有的位置
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29