京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据的输入与输出之READ函数
read.table() 函数
1、用于读入表格(表)类型的数据,同时生成数据框对象。
2、读入的数据要求有规则的分隔符,默认有:空格、TAB、换行符、回车符;其它的分隔符,通过sep=来进行指定。
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown")
例如:
demo_3<-read.table('e:/demo_3.txt',header=T)
read.fwf()函数
1、适用用于读入数据相应没有相应的分隔符,但是读入的数据字段长度是固定长度。
2、数据导入R后,生成列表对象。
读入固定分隔长度的数据;
read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000)
例如:在这个数据中,前面的3个字符与接下来的3个数字表示名称、得分,因为二个字段之间没有分隔符号,但其长度是固定的,所以适合用本函数。
ABC123%$12
TEX124@#12
y o14 @@#
read.fwf('e:/demo_1.txt',widths=c(3,3),col.names=c('name','score'));
w <- readline()函数
1、用于程序的交互,根据输入的条件来判断下一步执行的方向;
2、通过键盘读入一行数据;
例如:根据输入的来判断后续程序的执行流程
Demo_2<-function()
{
input<-readline("DO you think R is hard to learn,Please give your choice:Y or N ")
if(input=="Y")
cat("Come on; Spent more time.\n")
else
cat("Good!")
}
Demo_2()
Readlines() 函数
1、控制读入的数据行数,非批处理,有点类似于数据库中的指标操作,可对文件中的数据逐行操作。2、这个对于读入日志类的数据很有用。例如:通过对读入数据的每行来判断是否有需要的数据,有再对数据进行处理;tips:该数据配合R中的正则表达式相关函数,对于处理不规则的数据很强大。
例如:
1、 与文件demo_1建立连接
con<- file("demo_3","r")
2、指定每次执行只读入一行;
RC<-readLines(con,n=1)
3、关闭联接
close(con)
说明:
1、如果读到文件的最后,则length(RC)=0;EOF文件最后返回的空值。
2、N控制每次读入几行;https://www.cda.cn/
3、当读到最后要重新开始的时间:seek(con=c,where=0),返回当前指标所有的位置
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20