
数据的输入与输出之READ函数
read.table() 函数
1、用于读入表格(表)类型的数据,同时生成数据框对象。
2、读入的数据要求有规则的分隔符,默认有:空格、TAB、换行符、回车符;其它的分隔符,通过sep=来进行指定。
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown")
例如:
demo_3<-read.table('e:/demo_3.txt',header=T)
read.fwf()函数
1、适用用于读入数据相应没有相应的分隔符,但是读入的数据字段长度是固定长度。
2、数据导入R后,生成列表对象。
读入固定分隔长度的数据;
read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000)
例如:在这个数据中,前面的3个字符与接下来的3个数字表示名称、得分,因为二个字段之间没有分隔符号,但其长度是固定的,所以适合用本函数。
ABC123%$12
TEX124@#12
y o14 @@#
read.fwf('e:/demo_1.txt',widths=c(3,3),col.names=c('name','score'));
w <- readline()函数
1、用于程序的交互,根据输入的条件来判断下一步执行的方向;
2、通过键盘读入一行数据;
例如:根据输入的来判断后续程序的执行流程
Demo_2<-function()
{
input<-readline("DO you think R is hard to learn,Please give your choice:Y or N ")
if(input=="Y")
cat("Come on; Spent more time.\n")
else
cat("Good!")
}
Demo_2()
Readlines() 函数
1、控制读入的数据行数,非批处理,有点类似于数据库中的指标操作,可对文件中的数据逐行操作。2、这个对于读入日志类的数据很有用。例如:通过对读入数据的每行来判断是否有需要的数据,有再对数据进行处理;tips:该数据配合R中的正则表达式相关函数,对于处理不规则的数据很强大。
例如:
1、 与文件demo_1建立连接
con<- file("demo_3","r")
2、指定每次执行只读入一行;
RC<-readLines(con,n=1)
3、关闭联接
close(con)
说明:
1、如果读到文件的最后,则length(RC)=0;EOF文件最后返回的空值。
2、N控制每次读入几行;https://www.cda.cn/
3、当读到最后要重新开始的时间:seek(con=c,where=0),返回当前指标所有的位置
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15