京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 引发企业管理变革
大数据带来新一轮信息革命的同时,掀起了一场管理革命,在经营管理层面上给企业带来诸多变化。
目前,国内大数据已基本具备发展土壤:企业数据从数量和多样性上有质的提升,数据价值得到较高认同。本文尝试以大型国企(央企)为研究对象,探索大数据对企业管理变革的影响及企业的应对之策,希望对企业大数据管理和利用有所裨益。
大数据引发企业管理变革
从理论角度来讲,之所以说大数据掀起企业管理变革,背后有两个密切关联的因素。
一是大数据的本质与管理的核心因素高度契合。一般认为,管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以说大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
二是大数据由资源到资产的转变。大数据时代,数据在各行业渗透,渐渐成为企业战略资产。拥有数据的规模、质量直接决定了企业的核心竞争力以及市场洞察力,也影响着企业的战略调整,数据意味着巨大的投资回报。
央企大数据管理机遇与挑战并存
大数据发展对不同行业、发展阶段及规模的国有企业有着不同影响。特别是大型央企,在利用大数据方面起点相对较高,受益更大。对于央企来说,大数据对其经营管理意味着什么?
第一,机遇方面。一是体现在信息化建设投入上。大型央企有实力对企业的信息技术进行投资,应用较先进的技术,保障企业数据有效管理和利用。此外,国有企业管理延续性较强,总体较稳定。二是体现在顶层设计上。大型央企在大数据管理的顶层设计上具有优势,可以对企业数据化管理进行系统规划。三是体现在政策优势及人才队伍上。
第二,面临的挑战。一是信息体系建设十分迫切。一般大型国有企业数据量庞大,从信息挖掘层面讲,这需要合理的技术搭配。此外,从组织结构来说,大数据对信息技术部门与业务部门之间的密切配合提出了更高要求。二是注意信息安全防范。三是人才储备不足,对相关数据挖掘分析人才的吸引力和培养水平有待提高。
央企开展大数据管理的探索与展望
如何开展大数据管理?对于国内央企来说,要有一条符合自身发展特点的大数据管理路径,在信息化建设中,打造“数据化企业”。
第一,做好大数据资产的筛选和评估。对国内央企来说,这分为事前和事后两个阶段。事前是从思想上重视大数据对企业的影响,将数据作为企业的核心资源来看待。事后是要在企业内部对大数据进行从资源到资产的筛选,对什么样的大数据可以成为资产进行评估。
第二,集约开展顶层设计、系统规划。大型央企下属单位众多,企业管理结构不同,情况相对复杂。要发挥系统优势,必须对数据化进行统一科学设计,避免重复建设、各行其是、互不兼容,充分发挥信息技术对数据分析的作用。
第三,强化数据管理,重视数据安全。在数据管理上,央企可以结合现有企业信息化建设,将企业数据管理推向纵深。数据管理事关企业核心竞争力和战略目标,必须有战略高度。数据收集和管理要“广撒网”,发挥各部门的协同效应。不仅要关注综合性数据和关键数据,而且要关注基础数据,要深度利用、挖掘数据。同时,要特别重视数据安全,从技术和制度层面保障数据安全。
第四,优化内部运营模式,加强外部合作。央企应确立面向客户的价值服务导向,针对需求,重新制定、优化企业的制度、流程,增加数据收集、管理和分析环节,设计适应市场竞争的商业模式和内部运营模式。要加强与外部的合作。与外部企业、科研院所、行业协会等机构进行交流合作,实现数据技术、资源和平台互补。同时,加强上下游产业链相关企业的数据管理合作,在数据收集、分析、共享方面开展互助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17