京公网安备 11010802034615号
经营许可证编号:京B2-20210330
年轻一代是如何推动大数据成功的?
随着年轻一代的企业家踏入大数据这个行业,他们不只局限于利用当前的优势,还让大数据发展,他们正在推进和改变大数据编写和使用的方法。
现在大数据只增不减,商家意识到他们要么加入这个狂热中,要么只能加入反对那些使用更快速准确信息的公司的艰难战斗中。然而,随着年轻一代的企业家踏入这个行业,他们不只局限于利用当前的优势,还让大数据发展,他们正在推进和改变大数据编写和使用的方法。
这个领域有了新头脑的指导,大数据发展到了一个全新的创新水平。看看在我们周围即可发现,我们手机上的小通知,在营销活动中登录自己的社交账户,甚至是我们戴的配饰,到处都是大数据。商家是如何使用大数据的呢?
大数据伊始,企业一直试图发现更多——尽管现在这样的发现多的不行。这个想法是不仅要获取数据,而且还要数据更新和当前重要的客户信息,并通过分析和完成结果,企业可以获得发展。然而,现代的企业家不只将大数据推动至此,而且将从其他企业中收集的结构化数据与非结构化数据融合,他们不仅能够获得更多的信息,还可以比较两个信息最后更快得出真正重要的信息。这要求更多的外包数据和促使企业创建这样的数据。更重要的是,它鼓励很多人通过寻求更高超的数据分析专家、更高端的软件和工具(如闪存)来加速这个发展过程。
打开谷歌搜索,访问网站,或者网上购物时使用的这些数据都是是企业在众多用户中收集的。然而,尽管企业已经接受并使用这种资源,但年轻一代的企业家却开始寻找这些数据的重要之处,也就是人们以最非结构化的方式体现出的最有价值的信息所在之处。一直以来,企业不仅仅利用社交媒体来收集数据,他们改变账户,方法和营销努力以此获取他们所需要的反馈,并鼓励客户参与在线活动,提供最有价值的数据。年轻的一代不仅利用现有的数据,而且还为本身提供最好的服务量体裁衣。
尽管位列第二,使用平板电脑和手机应用程序作为获取用户信息的手段是一种商业策略,而且越来越多的人在利用。这导致了大多数未知的企业创建自己的应用程序,现代的一代是正将此推进一步。不仅仅是提供应用程序和接受已发掘的数据,年轻的企业家们更是为客户提供激励和好处以此给获取更多的数据。客户经常使用一款APP,提供个人信息,而且依赖它,更新他们的活动,企业现在能了解他们如何更好地为他们的客户服务和改变他们的努力。
看看可穿戴技术,会认为这是便捷的下一步发展。但对于现代的企业主来讲,这是大数据成就的一个典型的例子。从一个智能手表收集的数据可以允许企业不仅知道你的习惯和你频繁去的地方,还有哪些特性更吸引你以及不怎么使用,这些都是他们可以用来分析的数据,来提高你的总体体验,还可以大胆预测哪些趋势和品味可以引领你,这样他们就可以在一个不相关的领域提供最好的服务。企业提供自己的品牌的可穿戴产品或更简单的设计不仅在可穿戴式产品的炒作,还可以充分和创造性的利用大数据的提供信息。
不管是大方向还是小方面,年轻的企业家都正在调整大数据运行的方式,以及大数据收集和使用的方法。随着如云端服务这样的技术的出现来帮助其前进与发展,可以公正地说,大数据的使用是越来越有创造力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22