京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业地产调研如何筹备?怎样执行?数据如何分析
商业地产市场调研筹备工作
在调研之前的筹备工作中,有7个需要注意的关键点。
1、分析调研目标
调研筹备工作的第一个关键点是分析调研目标,很多人甚至专业人士常常省略这一点。分析调研目标之所以重要,是因为在项目的不同阶段,调研目标或调研重心是不同的。
通常而言,一个项目可分为三个阶段,具有相应的调研目标:
拿地待报规阶段
报规待建阶段
项目主体在建阶段
2、罗列重点问题
3、提炼调研核心问题
4、制定调研计划
5、设计调研表格
6、设计调研问卷
7、培训、考核调研人员
调研执行关键点
1、态度认真
调研人员在执行调研时,首先要做到态度认真。很多人由于态度不认真,败给了细节,不仅浪费了大量精力、人力、物力,还错失了把控项目的机会。一般来说,对一个大项目进行调研需要花费一个月左右的时间,在调研过程中,项目的其他工作也在同步推进,如果由于态度不够认真导致调研失败,其他工作必然也会受到阻碍。
2、数据准确
调研数据准确与否决定项目的成败。保证数据准确的关键点有2个:
经理要对下级交付的每一份表格、问卷都要及时检查审核。
经理在看完这些材料后要立刻指导,不能把工作拖到第二天。检查内容包括调研内容的完备性、填写得是否齐全、是否规范等。
3、开好调研总结会
开好调研总结会是执行调研的制度性保障。通过调研总结会,能够让调研人员准确、及时地反映客观情况,摒弃错误的内容,需要经理严格把关。
召开调研总结会要经过一定的流程:
业务员依次汇报调研过程。
突出重点。业务员要反映调研过程中发现的重点问题、核心问题,拒绝流水账。
发现问题。即反馈问题,能反映出客户对项目的了解和理解程度。
明确成果。业务员在和客户沟通的过程中,要掌握了其心理动机,发现其心理变化,抓住其相关需求。
只有做到这12个字,才能使调研总结会不浮于表面,而是深入地探讨、解决问题。
调研数据分析
分析调研数据有三个关键点:定量数据的验证作用、定性数据的论证作用、数据与结论必然性的评估。
1、定量数据的验证作用
定量数据是用来验证假设的
定量数据有三个核心工具:加法、减法和波动。通过定量数据并不能确定如何执行项目,但却能用来验证假设。假设是主观与客观的结合,客观的是现有的市场体量,主观的是假设的要做的业态的可能性,因而,假设包含一定的艺术性和技巧性。
思维的第一个层次是定义;
第二个层次是分类;
第三个层次是提炼同类中更具集中性的内容,即概括;第四个层次是在此基础上进行的推理、判断;第五个层次是进行创造性的假设,没有创造性的假设不可能有突破。定量数据能验证假设结果的错误性,而不能验证其正确性。
2、不同定量数据的验证作用不同
可以累加的定量数据用加法验证规模,不可以累加的定量数据用波动验证其范围。当然,在某些特殊情况下,某些指标可以突破这个范围,但这种突破必须建立在一定的支撑点上。
3、定性数据的论证作用
定性数据的核心作用是考察商业认同度。定性数据的论证作用有三种表现形式:推理基础、假设前提和判断证据。
推理基础
在调研过程中,如果没有调查问卷得出的定性数据,就无法进一步推理项目的可行性。因此,定性数据是调研的推理基础。
假设前提
通过定性数据,能够推出结论,而非验证结论,因而定性数据起着论证假设前提的作用。调研的样本越多,论证假设前提的准确性越高。
判断证据
通过定性数据,能够判断证据的真实性。样本越大,越能为这种判断提供支撑。
4、数据与结论必然性评估
在进行调研时,首先要了解调研数据的分类,明确其是定量数据还是定性数据。进而通过调研数据验证假设结论,比较分析后得出结论。接着,根据假设结论的逻辑性倒推数据支撑,用调研数据与倒推数据进行比较,从而得出结论。同时,还要对调研数据进行分类汇总、归纳,推导出结论,并综合项目信息验证结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22