京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业地产调研如何筹备?怎样执行?数据如何分析
商业地产市场调研筹备工作
在调研之前的筹备工作中,有7个需要注意的关键点。
1、分析调研目标
调研筹备工作的第一个关键点是分析调研目标,很多人甚至专业人士常常省略这一点。分析调研目标之所以重要,是因为在项目的不同阶段,调研目标或调研重心是不同的。
通常而言,一个项目可分为三个阶段,具有相应的调研目标:
拿地待报规阶段
报规待建阶段
项目主体在建阶段
2、罗列重点问题
3、提炼调研核心问题
4、制定调研计划
5、设计调研表格
6、设计调研问卷
7、培训、考核调研人员
调研执行关键点
1、态度认真
调研人员在执行调研时,首先要做到态度认真。很多人由于态度不认真,败给了细节,不仅浪费了大量精力、人力、物力,还错失了把控项目的机会。一般来说,对一个大项目进行调研需要花费一个月左右的时间,在调研过程中,项目的其他工作也在同步推进,如果由于态度不够认真导致调研失败,其他工作必然也会受到阻碍。
2、数据准确
调研数据准确与否决定项目的成败。保证数据准确的关键点有2个:
经理要对下级交付的每一份表格、问卷都要及时检查审核。
经理在看完这些材料后要立刻指导,不能把工作拖到第二天。检查内容包括调研内容的完备性、填写得是否齐全、是否规范等。
3、开好调研总结会
开好调研总结会是执行调研的制度性保障。通过调研总结会,能够让调研人员准确、及时地反映客观情况,摒弃错误的内容,需要经理严格把关。
召开调研总结会要经过一定的流程:
业务员依次汇报调研过程。
突出重点。业务员要反映调研过程中发现的重点问题、核心问题,拒绝流水账。
发现问题。即反馈问题,能反映出客户对项目的了解和理解程度。
明确成果。业务员在和客户沟通的过程中,要掌握了其心理动机,发现其心理变化,抓住其相关需求。
只有做到这12个字,才能使调研总结会不浮于表面,而是深入地探讨、解决问题。
调研数据分析
分析调研数据有三个关键点:定量数据的验证作用、定性数据的论证作用、数据与结论必然性的评估。
1、定量数据的验证作用
定量数据是用来验证假设的
定量数据有三个核心工具:加法、减法和波动。通过定量数据并不能确定如何执行项目,但却能用来验证假设。假设是主观与客观的结合,客观的是现有的市场体量,主观的是假设的要做的业态的可能性,因而,假设包含一定的艺术性和技巧性。
思维的第一个层次是定义;
第二个层次是分类;
第三个层次是提炼同类中更具集中性的内容,即概括;第四个层次是在此基础上进行的推理、判断;第五个层次是进行创造性的假设,没有创造性的假设不可能有突破。定量数据能验证假设结果的错误性,而不能验证其正确性。
2、不同定量数据的验证作用不同
可以累加的定量数据用加法验证规模,不可以累加的定量数据用波动验证其范围。当然,在某些特殊情况下,某些指标可以突破这个范围,但这种突破必须建立在一定的支撑点上。
3、定性数据的论证作用
定性数据的核心作用是考察商业认同度。定性数据的论证作用有三种表现形式:推理基础、假设前提和判断证据。
推理基础
在调研过程中,如果没有调查问卷得出的定性数据,就无法进一步推理项目的可行性。因此,定性数据是调研的推理基础。
假设前提
通过定性数据,能够推出结论,而非验证结论,因而定性数据起着论证假设前提的作用。调研的样本越多,论证假设前提的准确性越高。
判断证据
通过定性数据,能够判断证据的真实性。样本越大,越能为这种判断提供支撑。
4、数据与结论必然性评估
在进行调研时,首先要了解调研数据的分类,明确其是定量数据还是定性数据。进而通过调研数据验证假设结论,比较分析后得出结论。接着,根据假设结论的逻辑性倒推数据支撑,用调研数据与倒推数据进行比较,从而得出结论。同时,还要对调研数据进行分类汇总、归纳,推导出结论,并综合项目信息验证结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23