京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的解密人
随着市场开放程度越来越高,跨区域、跨行业投资也越来越普遍,公司决策也逐渐由“经验决策”向“数据决策”转型。上世纪90年代,数据分析师在国内出现。伴随着信息化的进一步发展,“大数据”已经成为继云计算、物联网、移动互联网之后,又一个具有国家战略意义的新兴产业。
前景评估:
通用电气公司(GE)预测,未来10年内,数据分析师必将成为最热门的职业;全球知名人力资源杂志《HR管理世界》,更将数据分析师列为全球最赚钱七大职业,收入超过医生和律师。
晚上11时至次日凌晨5时,重庆市民都在干嘛?
阿里巴巴集团董事会主席马云的答案是:这时,有54.5万重庆人热衷于“网购”,其中,有一半以上都是在用手机“逛商场”。
这个结论,正是源于“大数据分析”。
阿里巴巴数据分析师告诉记者,这样的结论,仅仅是数据分析的开始。数据分析的真正价值是找出规律,指导消费者及商家的未来行为。
角色定位:发现规律,预测未来
为让人更好地理解数据分析师这个职业,“仲量联行”重庆分公司数据研究部负责人马丽华给记者讲了一个故事:
一个农民赶着羊群在草原上走,迎面碰到一个人对他说,“我可以告诉你,你的羊群有多少只羊。”随即,他用卫星定位技术和网络技术将信息发到总部的数据库……片刻后,他告诉农民羊群里共有1500只羊。
马丽华说:“这个人,只是数据采集员。而真正的数据分析师,他会告诉农民,羊群共有1500只羊,仅有10只公羊,其余为母羊;母羊中,可以繁殖的有1000只,其余为羊崽。因此,当务之急是,卖掉长肥的母羊,引进更多的公羊,以解决当前公羊和母羊比例严重失调的问题。”
记者在百度中搜索“数据分析师+重庆”发现,数据分析师招聘信息,涵盖本地文化传媒公司、航空公司、房地产、餐饮、金融、旅游等各行各业。而仔细阅读这些招聘要求可发现,大多数本地企业招聘的仅仅是“数据采集员”,与“数据分析师”的要求相去甚远。
“目前,重庆多个大学开设了数据分析类课程,从事数据分析相关工作的人员也超过万名,但"货真价实"的数据分析师并不多。”马丽华举例,在重庆国际地产经纪领域,真正的数据分析师不超过20人。
“数据分析师不应当只是发现"经验",而应当通过掌握数据规律,发现潜在的价值,预见未来可能发生的情形。”在马丽华看来,数据分析师的行业价值,可浓缩体现为“发现规律,预测未来”。
据统计,目前世界500强企业中,有90%以上都建立了数据分析部门,IBM、微软、Inter等公司正积极投资数据业务,建立大数据部门,培养数据分析团队。
行业风险:“先入为主”难以规避
“收集、整理、分析,是对数据分析师日常工作的高度概括。”马丽华说,数据“收集”和“整理”过程,基本上是运用统计学原理进行,其难度系数并不高。而对数据分析师真正的考验,在于“分析”。
“数据分析师的最终价值,体现在"有一定指导性结论"的报告中。就分析这一环节,对整个报告的价值贡献超过80%。”马丽华说。
当前,“数据分析报告”,已经成为众多现代化企业战略制定的核心依据。
“报告中,数据扮演的仅仅是基础工具的角色。以房地产行业为例,往往最好的数据分析师,并非数学或统计学专业出生,而是有丰富的房地产从业经验的人。”马丽华说。
基于上述情况,数据分析被赋予了专业的“主观色彩”,“先入为主”成为数据分析过程中,不可规避的风险。
“比如,面对同一组财报数据,不同的证券分析师,可能会给出截然不同的结论。”在渝某金融公司从事证券分析8年多的周绮坦言,分析师往往会根据经验先出现结论,然后再用部分数据予以佐证。
“结论迥异,取舍的数据也不相同。这从逻辑学上来说并无问题,但谁的结论更接近未来真相,这是数据分析师的核心竞争力所在。”对此,周绮认为,每个人由于从业经验、专业知识等方面的不同,对数据的理解也自然不同,这在数据分析过程中无法避免。
最大瓶颈:“数据共享”受阻
数据收集是数据分析中最基本的环节,但也是当下最令数据分析师们头痛的一个环节。
“有时候,仅仅为了收集一个楼盘的信息,便可能耗费几天时间。”曾在重庆搜房论坛从事数据分析工作的刘鑫透露,网站大部分的楼盘信息,都是通过现场踩盘,或与开发商的私人关系进行采集的。通过官方渠道收集信息,可能受阻或滞后。
“信息共享的问题,现阶段在机关内部都没有得到解决,更不用说面向市场开放了。”对此,市内某机关网络处的工作人员透露,比如因为数据系统不一样,部分单位的数据根本无法实现即时共享,“需要的时候,还得专门请他们调取后,以电子邮件方式进行传输。”
“在国外,众多数据都可以从官方渠道获得,数据分析师可直接进入、整理、筛选。”刘鑫说,而在国内,数据收集则成了一道坎,这将直接导致信息失真。“数据共享受阻”,已成为数据分析行业发展的绊脚石。
据了解,“数据收集”渠道不畅,还催生了“源数据交易”这一“配套行当”。近几年来,众多行业巨头通过自身的渠道优势,建立了行业数据库,并对外出售源数据,部分源数据的价格卖到了千万元/套。
刘鑫介绍,在国外,“源数据交易”是一种市场细分,源数据的市场价值也较为稳定。而目前在国内,“源数据交易”已经成为部分数据分析企业获取源数据的唯一途径。天价的数据源,也将影响到数据分析的成本和市场定价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08