京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的解密人
随着市场开放程度越来越高,跨区域、跨行业投资也越来越普遍,公司决策也逐渐由“经验决策”向“数据决策”转型。上世纪90年代,数据分析师在国内出现。伴随着信息化的进一步发展,“大数据”已经成为继云计算、物联网、移动互联网之后,又一个具有国家战略意义的新兴产业。
前景评估:
通用电气公司(GE)预测,未来10年内,数据分析师必将成为最热门的职业;全球知名人力资源杂志《HR管理世界》,更将数据分析师列为全球最赚钱七大职业,收入超过医生和律师。
晚上11时至次日凌晨5时,重庆市民都在干嘛?
阿里巴巴集团董事会主席马云的答案是:这时,有54.5万重庆人热衷于“网购”,其中,有一半以上都是在用手机“逛商场”。
这个结论,正是源于“大数据分析”。
阿里巴巴数据分析师告诉记者,这样的结论,仅仅是数据分析的开始。数据分析的真正价值是找出规律,指导消费者及商家的未来行为。
角色定位:发现规律,预测未来
为让人更好地理解数据分析师这个职业,“仲量联行”重庆分公司数据研究部负责人马丽华给记者讲了一个故事:
一个农民赶着羊群在草原上走,迎面碰到一个人对他说,“我可以告诉你,你的羊群有多少只羊。”随即,他用卫星定位技术和网络技术将信息发到总部的数据库……片刻后,他告诉农民羊群里共有1500只羊。
马丽华说:“这个人,只是数据采集员。而真正的数据分析师,他会告诉农民,羊群共有1500只羊,仅有10只公羊,其余为母羊;母羊中,可以繁殖的有1000只,其余为羊崽。因此,当务之急是,卖掉长肥的母羊,引进更多的公羊,以解决当前公羊和母羊比例严重失调的问题。”
记者在百度中搜索“数据分析师+重庆”发现,数据分析师招聘信息,涵盖本地文化传媒公司、航空公司、房地产、餐饮、金融、旅游等各行各业。而仔细阅读这些招聘要求可发现,大多数本地企业招聘的仅仅是“数据采集员”,与“数据分析师”的要求相去甚远。
“目前,重庆多个大学开设了数据分析类课程,从事数据分析相关工作的人员也超过万名,但"货真价实"的数据分析师并不多。”马丽华举例,在重庆国际地产经纪领域,真正的数据分析师不超过20人。
“数据分析师不应当只是发现"经验",而应当通过掌握数据规律,发现潜在的价值,预见未来可能发生的情形。”在马丽华看来,数据分析师的行业价值,可浓缩体现为“发现规律,预测未来”。
据统计,目前世界500强企业中,有90%以上都建立了数据分析部门,IBM、微软、Inter等公司正积极投资数据业务,建立大数据部门,培养数据分析团队。
行业风险:“先入为主”难以规避
“收集、整理、分析,是对数据分析师日常工作的高度概括。”马丽华说,数据“收集”和“整理”过程,基本上是运用统计学原理进行,其难度系数并不高。而对数据分析师真正的考验,在于“分析”。
“数据分析师的最终价值,体现在"有一定指导性结论"的报告中。就分析这一环节,对整个报告的价值贡献超过80%。”马丽华说。
当前,“数据分析报告”,已经成为众多现代化企业战略制定的核心依据。
“报告中,数据扮演的仅仅是基础工具的角色。以房地产行业为例,往往最好的数据分析师,并非数学或统计学专业出生,而是有丰富的房地产从业经验的人。”马丽华说。
基于上述情况,数据分析被赋予了专业的“主观色彩”,“先入为主”成为数据分析过程中,不可规避的风险。
“比如,面对同一组财报数据,不同的证券分析师,可能会给出截然不同的结论。”在渝某金融公司从事证券分析8年多的周绮坦言,分析师往往会根据经验先出现结论,然后再用部分数据予以佐证。
“结论迥异,取舍的数据也不相同。这从逻辑学上来说并无问题,但谁的结论更接近未来真相,这是数据分析师的核心竞争力所在。”对此,周绮认为,每个人由于从业经验、专业知识等方面的不同,对数据的理解也自然不同,这在数据分析过程中无法避免。
最大瓶颈:“数据共享”受阻
数据收集是数据分析中最基本的环节,但也是当下最令数据分析师们头痛的一个环节。
“有时候,仅仅为了收集一个楼盘的信息,便可能耗费几天时间。”曾在重庆搜房论坛从事数据分析工作的刘鑫透露,网站大部分的楼盘信息,都是通过现场踩盘,或与开发商的私人关系进行采集的。通过官方渠道收集信息,可能受阻或滞后。
“信息共享的问题,现阶段在机关内部都没有得到解决,更不用说面向市场开放了。”对此,市内某机关网络处的工作人员透露,比如因为数据系统不一样,部分单位的数据根本无法实现即时共享,“需要的时候,还得专门请他们调取后,以电子邮件方式进行传输。”
“在国外,众多数据都可以从官方渠道获得,数据分析师可直接进入、整理、筛选。”刘鑫说,而在国内,数据收集则成了一道坎,这将直接导致信息失真。“数据共享受阻”,已成为数据分析行业发展的绊脚石。
据了解,“数据收集”渠道不畅,还催生了“源数据交易”这一“配套行当”。近几年来,众多行业巨头通过自身的渠道优势,建立了行业数据库,并对外出售源数据,部分源数据的价格卖到了千万元/套。
刘鑫介绍,在国外,“源数据交易”是一种市场细分,源数据的市场价值也较为稳定。而目前在国内,“源数据交易”已经成为部分数据分析企业获取源数据的唯一途径。天价的数据源,也将影响到数据分析的成本和市场定价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26