
大数据时代的解密人
随着市场开放程度越来越高,跨区域、跨行业投资也越来越普遍,公司决策也逐渐由“经验决策”向“数据决策”转型。上世纪90年代,数据分析师在国内出现。伴随着信息化的进一步发展,“大数据”已经成为继云计算、物联网、移动互联网之后,又一个具有国家战略意义的新兴产业。
前景评估:
通用电气公司(GE)预测,未来10年内,数据分析师必将成为最热门的职业;全球知名人力资源杂志《HR管理世界》,更将数据分析师列为全球最赚钱七大职业,收入超过医生和律师。
晚上11时至次日凌晨5时,重庆市民都在干嘛?
阿里巴巴集团董事会主席马云的答案是:这时,有54.5万重庆人热衷于“网购”,其中,有一半以上都是在用手机“逛商场”。
这个结论,正是源于“大数据分析”。
阿里巴巴数据分析师告诉记者,这样的结论,仅仅是数据分析的开始。数据分析的真正价值是找出规律,指导消费者及商家的未来行为。
角色定位:发现规律,预测未来
为让人更好地理解数据分析师这个职业,“仲量联行”重庆分公司数据研究部负责人马丽华给记者讲了一个故事:
一个农民赶着羊群在草原上走,迎面碰到一个人对他说,“我可以告诉你,你的羊群有多少只羊。”随即,他用卫星定位技术和网络技术将信息发到总部的数据库……片刻后,他告诉农民羊群里共有1500只羊。
马丽华说:“这个人,只是数据采集员。而真正的数据分析师,他会告诉农民,羊群共有1500只羊,仅有10只公羊,其余为母羊;母羊中,可以繁殖的有1000只,其余为羊崽。因此,当务之急是,卖掉长肥的母羊,引进更多的公羊,以解决当前公羊和母羊比例严重失调的问题。”
记者在百度中搜索“数据分析师+重庆”发现,数据分析师招聘信息,涵盖本地文化传媒公司、航空公司、房地产、餐饮、金融、旅游等各行各业。而仔细阅读这些招聘要求可发现,大多数本地企业招聘的仅仅是“数据采集员”,与“数据分析师”的要求相去甚远。
“目前,重庆多个大学开设了数据分析类课程,从事数据分析相关工作的人员也超过万名,但"货真价实"的数据分析师并不多。”马丽华举例,在重庆国际地产经纪领域,真正的数据分析师不超过20人。
“数据分析师不应当只是发现"经验",而应当通过掌握数据规律,发现潜在的价值,预见未来可能发生的情形。”在马丽华看来,数据分析师的行业价值,可浓缩体现为“发现规律,预测未来”。
据统计,目前世界500强企业中,有90%以上都建立了数据分析部门,IBM、微软、Inter等公司正积极投资数据业务,建立大数据部门,培养数据分析团队。
行业风险:“先入为主”难以规避
“收集、整理、分析,是对数据分析师日常工作的高度概括。”马丽华说,数据“收集”和“整理”过程,基本上是运用统计学原理进行,其难度系数并不高。而对数据分析师真正的考验,在于“分析”。
“数据分析师的最终价值,体现在"有一定指导性结论"的报告中。就分析这一环节,对整个报告的价值贡献超过80%。”马丽华说。
当前,“数据分析报告”,已经成为众多现代化企业战略制定的核心依据。
“报告中,数据扮演的仅仅是基础工具的角色。以房地产行业为例,往往最好的数据分析师,并非数学或统计学专业出生,而是有丰富的房地产从业经验的人。”马丽华说。
基于上述情况,数据分析被赋予了专业的“主观色彩”,“先入为主”成为数据分析过程中,不可规避的风险。
“比如,面对同一组财报数据,不同的证券分析师,可能会给出截然不同的结论。”在渝某金融公司从事证券分析8年多的周绮坦言,分析师往往会根据经验先出现结论,然后再用部分数据予以佐证。
“结论迥异,取舍的数据也不相同。这从逻辑学上来说并无问题,但谁的结论更接近未来真相,这是数据分析师的核心竞争力所在。”对此,周绮认为,每个人由于从业经验、专业知识等方面的不同,对数据的理解也自然不同,这在数据分析过程中无法避免。
最大瓶颈:“数据共享”受阻
数据收集是数据分析中最基本的环节,但也是当下最令数据分析师们头痛的一个环节。
“有时候,仅仅为了收集一个楼盘的信息,便可能耗费几天时间。”曾在重庆搜房论坛从事数据分析工作的刘鑫透露,网站大部分的楼盘信息,都是通过现场踩盘,或与开发商的私人关系进行采集的。通过官方渠道收集信息,可能受阻或滞后。
“信息共享的问题,现阶段在机关内部都没有得到解决,更不用说面向市场开放了。”对此,市内某机关网络处的工作人员透露,比如因为数据系统不一样,部分单位的数据根本无法实现即时共享,“需要的时候,还得专门请他们调取后,以电子邮件方式进行传输。”
“在国外,众多数据都可以从官方渠道获得,数据分析师可直接进入、整理、筛选。”刘鑫说,而在国内,数据收集则成了一道坎,这将直接导致信息失真。“数据共享受阻”,已成为数据分析行业发展的绊脚石。
据了解,“数据收集”渠道不畅,还催生了“源数据交易”这一“配套行当”。近几年来,众多行业巨头通过自身的渠道优势,建立了行业数据库,并对外出售源数据,部分源数据的价格卖到了千万元/套。
刘鑫介绍,在国外,“源数据交易”是一种市场细分,源数据的市场价值也较为稳定。而目前在国内,“源数据交易”已经成为部分数据分析企业获取源数据的唯一途径。天价的数据源,也将影响到数据分析的成本和市场定价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30