
大数据时代的解密人
随着市场开放程度越来越高,跨区域、跨行业投资也越来越普遍,公司决策也逐渐由“经验决策”向“数据决策”转型。上世纪90年代,数据分析师在国内出现。伴随着信息化的进一步发展,“大数据”已经成为继云计算、物联网、移动互联网之后,又一个具有国家战略意义的新兴产业。
前景评估:
通用电气公司(GE)预测,未来10年内,数据分析师必将成为最热门的职业;全球知名人力资源杂志《HR管理世界》,更将数据分析师列为全球最赚钱七大职业,收入超过医生和律师。
晚上11时至次日凌晨5时,重庆市民都在干嘛?
阿里巴巴集团董事会主席马云的答案是:这时,有54.5万重庆人热衷于“网购”,其中,有一半以上都是在用手机“逛商场”。
这个结论,正是源于“大数据分析”。
阿里巴巴数据分析师告诉记者,这样的结论,仅仅是数据分析的开始。数据分析的真正价值是找出规律,指导消费者及商家的未来行为。
角色定位:发现规律,预测未来
为让人更好地理解数据分析师这个职业,“仲量联行”重庆分公司数据研究部负责人马丽华给记者讲了一个故事:
一个农民赶着羊群在草原上走,迎面碰到一个人对他说,“我可以告诉你,你的羊群有多少只羊。”随即,他用卫星定位技术和网络技术将信息发到总部的数据库……片刻后,他告诉农民羊群里共有1500只羊。
马丽华说:“这个人,只是数据采集员。而真正的数据分析师,他会告诉农民,羊群共有1500只羊,仅有10只公羊,其余为母羊;母羊中,可以繁殖的有1000只,其余为羊崽。因此,当务之急是,卖掉长肥的母羊,引进更多的公羊,以解决当前公羊和母羊比例严重失调的问题。”
记者在百度中搜索“数据分析师+重庆”发现,数据分析师招聘信息,涵盖本地文化传媒公司、航空公司、房地产、餐饮、金融、旅游等各行各业。而仔细阅读这些招聘要求可发现,大多数本地企业招聘的仅仅是“数据采集员”,与“数据分析师”的要求相去甚远。
“目前,重庆多个大学开设了数据分析类课程,从事数据分析相关工作的人员也超过万名,但"货真价实"的数据分析师并不多。”马丽华举例,在重庆国际地产经纪领域,真正的数据分析师不超过20人。
“数据分析师不应当只是发现"经验",而应当通过掌握数据规律,发现潜在的价值,预见未来可能发生的情形。”在马丽华看来,数据分析师的行业价值,可浓缩体现为“发现规律,预测未来”。
据统计,目前世界500强企业中,有90%以上都建立了数据分析部门,IBM、微软、Inter等公司正积极投资数据业务,建立大数据部门,培养数据分析团队。
行业风险:“先入为主”难以规避
“收集、整理、分析,是对数据分析师日常工作的高度概括。”马丽华说,数据“收集”和“整理”过程,基本上是运用统计学原理进行,其难度系数并不高。而对数据分析师真正的考验,在于“分析”。
“数据分析师的最终价值,体现在"有一定指导性结论"的报告中。就分析这一环节,对整个报告的价值贡献超过80%。”马丽华说。
当前,“数据分析报告”,已经成为众多现代化企业战略制定的核心依据。
“报告中,数据扮演的仅仅是基础工具的角色。以房地产行业为例,往往最好的数据分析师,并非数学或统计学专业出生,而是有丰富的房地产从业经验的人。”马丽华说。
基于上述情况,数据分析被赋予了专业的“主观色彩”,“先入为主”成为数据分析过程中,不可规避的风险。
“比如,面对同一组财报数据,不同的证券分析师,可能会给出截然不同的结论。”在渝某金融公司从事证券分析8年多的周绮坦言,分析师往往会根据经验先出现结论,然后再用部分数据予以佐证。
“结论迥异,取舍的数据也不相同。这从逻辑学上来说并无问题,但谁的结论更接近未来真相,这是数据分析师的核心竞争力所在。”对此,周绮认为,每个人由于从业经验、专业知识等方面的不同,对数据的理解也自然不同,这在数据分析过程中无法避免。
最大瓶颈:“数据共享”受阻
数据收集是数据分析中最基本的环节,但也是当下最令数据分析师们头痛的一个环节。
“有时候,仅仅为了收集一个楼盘的信息,便可能耗费几天时间。”曾在重庆搜房论坛从事数据分析工作的刘鑫透露,网站大部分的楼盘信息,都是通过现场踩盘,或与开发商的私人关系进行采集的。通过官方渠道收集信息,可能受阻或滞后。
“信息共享的问题,现阶段在机关内部都没有得到解决,更不用说面向市场开放了。”对此,市内某机关网络处的工作人员透露,比如因为数据系统不一样,部分单位的数据根本无法实现即时共享,“需要的时候,还得专门请他们调取后,以电子邮件方式进行传输。”
“在国外,众多数据都可以从官方渠道获得,数据分析师可直接进入、整理、筛选。”刘鑫说,而在国内,数据收集则成了一道坎,这将直接导致信息失真。“数据共享受阻”,已成为数据分析行业发展的绊脚石。
据了解,“数据收集”渠道不畅,还催生了“源数据交易”这一“配套行当”。近几年来,众多行业巨头通过自身的渠道优势,建立了行业数据库,并对外出售源数据,部分源数据的价格卖到了千万元/套。
刘鑫介绍,在国外,“源数据交易”是一种市场细分,源数据的市场价值也较为稳定。而目前在国内,“源数据交易”已经成为部分数据分析企业获取源数据的唯一途径。天价的数据源,也将影响到数据分析的成本和市场定价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08