
为什么你的分析报告没有被领导赏识
现代应用程序从多个源数控流事件摄取大量实时数据。这些应用程序背后的企业希望利用这些数据造福自身和它的客户,提供更愉快的用户体验、更具个性化的交互服务。
常见的流媒体分析数据来源,如传感器数据、社会提要,计费系统,在线游戏,数字广告平台,连接设备。然而,创造真正的商业价值,你必须通过一个业务组件与应用程序集成流分析结果。组织必须快速采取行动获得的他们见解,否则他们会错过商机。高速数据的流数据分析需要选择有影响力架构,以满足技术和公司目标。
换句话说,分析创建洞察力,但思考”这很有趣!“的结果并没有改善业务流程。你必须采取行动,使用数据收集与分析获取帮助。竞争的激烈和威胁来自现有和非传统商业模式。是不是每个人都对组织使用数据简单的报告或汇总? 流分析结合交易是一个重要的能力。
整合流分析和交易提供一系列显著的好处。例如,应用程序集成到一个数据摄取管道可以支持流分析中用户的交互使用。 这可以使更多的交互式应用程序,提高生命周期价值,提高转化率,优化资源消耗,减少浪费。当开发人员设计把流分析和交易整合到软件结构时,可以利用用较少的,更强大的组件。最后,在流分析的建设构造时,可以为我们带来具有充分特色,强大的应用程序,比建立自己的替代品市场更快。
数据流分析的宏观趋势
采用这种技术的趋势是从批处理转向流分析,日益普及公共和私有的云计算和产生数据周边设备如服饰的增值。
这些动作中的每一个动作都已经进行了一段时间,但现在他们走到了一起,例子包括所有基于快速数据流基础上的个性化、实时计费、实时监控。然而,很少有共识认为有必要构建这些应用程序和技术支持。
首先,我们要清楚我们谈论什么。快速的数据是实时数据,要从移动、社交网络、传感器、设备、互动、观察,和大规模的软件即服务(SaaS)平台提取。
技术支持快速数据流分析是建立在对现场数据进行实时分析的结果上,用于通知actions—e.g分析结果,一个事务运行作为一个持续的过程。 虽然这不是一个业务或技术必要性,每个使用情况下,这是一个规则的改变。在软件需求中,可以建议一个快速的数据解决方案。
通过高性能的数据管理系统的技术可行性
提供廉价的云存储和计算资源
提供用户需求更好、更快、准确的信息
标准的生产流程控制,更倾向于自动化的,连续的, ,而不是大的批处理
体系结构的选择
这些趋势分析创建了新的业务需求和机会,同时也意味着技术人员需要的专业工具来完成工作。选择适当的架构,确保应用程序可以支持流媒体直播数据流分析和交易。
联机分析处理(OLAP)系统专注于存储和报告。 他们可以提供实时摄取和快速报告。然而,这些应用程序通常不支持事务,更将报告和流媒体分析的结果立即返回到应用程序中。如果事务是必需的,他们会卸到其他数据库系统。
流媒体系统,其中可能包括连续事件处理(CEP)系统,关注连续报道。大量的流媒体产品分布式并行查询引擎依赖于一个统一的编程框架,可以处理存储数据(使用批处理)和流数据(使用流处理)。 然而,数据持久性卸到其他数据库系统,增加了复杂性和成本。
操作数据库系统专注于应用程序交互。这些在线事务处理(OLTP)产品提供存储和查询语义经典的面向请求-响应的应用程序,需要创建、读取、更新和删除记录。 然而,分析后卸到其他数据库系统,这些系统不能自动适应进行分析。
集成解决方案结合这些框架的优点,是最好的选择:他们提供的数据长期存储和分析,使流分析定制,并提供千上万的用户所需的低延迟应用程序。
VoltDB,例如,提供了一个熟悉的关系数据模型,支持交互式应用程序,实时数据流分析操作的应用程序需要管理状态和执行每个事件的事务。VoltDB是Forrester所说的一个例子,translytical数据库Gartner混合事务/分析处理系统(HTAP)的解决方案。它支持需要更新,读取,和写入数据的应用程序,而不是简单地记录收集的批次报告。流分析和交易的,它不需要复杂的依赖于其他系统,如Apache ZKSC堆栈或辅助数据库。
本质上:在快速数据应用中, 没有分析行动的几乎没有价值。 如果你正在构建应用程序,请确保分析使业务系统能够通过使用收集的数据来传递最大价值,而不仅仅是将其填充在日志文件或其它数据库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07