
sql语句 之聚合函数
聚合分析
在访问数据库时,经常需要对表中的某列数据进行统计分析,如求其最大值、最小值、平均值等。所有这些针对表中一列或者多列数据的分析就称为聚合分析。
在SQL中,可以使用聚合函数快速实现数据的聚合分析。与第7章介绍的SQL中的函数不同,聚合函数是对列中的一系列数据进行处理,返回单个统计值;而前面的函数则是对列中的单个数据进行处理。
聚合函数
SUM()
返回选取结果集中所有值的总和
MAX()
返回选取结果集中所有值的最大值
MIN()
返回选取结果集中所有值的最小值
AVG()
返回选取结果集中所有值的平均值
COUNT()
返回选取结果集中行的数目
SUM()
SELECT SUM(SAL) AS BOYSAL FROM TEACHER WHERE TSEX='男'
当对某列数据进行求和时,如果该列存在NULL值,则SUM函数会忽略该值。(加上all也对每列进行求和)
COUNT()
必须指定一个列的名称或者使用星号,星号表示计算一个表中的所有记录。两种使用形式如下。
* COUNT(*),计算表中行的总数,即使表中行的数据为NULL,也被计入在内。
* COUNT(column),计算column列包含的行的数目,如果该列中某行数据为NULL,则该行不计入统计总数.
注意
COUNT(*)函数将准确地返回表中的总行数,而仅当COUNT()函数的参数列没有NULL值时,才返回表中正确的行计数,所以仅当受NOT NULL限制的列作为参数时,才可使用COUNT( )函数代替COUNT(*)函数。
SELECT COUNT(TNO) AS TOTAL_TNO, COUNT(TNAME) AS TOTAL_TNAME, COUNT(SAL) AS TOTAL_SAL
FROM TEACHER
使用COUNT( )函数对多列中的数据计数
对多列计数,则需要将要计数的多列通过连接符连接后,作为COUNT( )函数的参数
(暂时无例子 以后补充上来)
最大/最小值函数—MAX()/MIN()
列中的数据可以是数值、字符串或是日期时间数据类型。MAX()/MIN()函数将返回与被传递的列同一数据类型的单一值
这里举一个例子,有典型性的.
SELECT MAX (AGE) AS MAXAGE FROM TEACHER (取年纪最大的老师)
但是通常取出来后是要看老师的基本信息的,如姓名,性别,工作的年限等.
然而SQL不支持如下的SELECT语句
SELECT TNAME, DNAME, TSEX, MAX (AGE) FROM TEACHER
那该怎么办了?
SELECT TNAME, DNAME, TSEX,SAL ,AGE FROM TEACHER
WHERE AGE=MAX (AGE) 就可以
当列的类型是 字符串或者日期时
均值函数——AVG()
AVG()函数的执行过程实际上是将一列中的值加起来,再将其和除以非NULL值的数目。所以,与SUM( )函数一样,AVG()函数只能作用于数值型数据,即列column_name中的数据必须是数值型的。
SELECT AVG (column_name) FROM table_name
当你想显示 其他信息时,如姓名,年纪,方法如下
SELECT * FROM TEACHER
WHERE AGE >= (SELECT AVG (AGE) FROM TEACHER)
ORDER BY AGE
聚合分析的重值处理
5种聚合函数,可以作用于所选列中的所有数据(不管列中的数据是否有重置),也可以只对列中的非重值进行处理,即把重复的值只取一次进行聚合分析。当然,对于MAX()/MIN()函数来讲,重值处理意义不大。
可以使用ALL关键字指明对所选列中的所有数据进行处理,使用DISTINCT关键字指明对所选列中的非重值数据进行处理。以AVG()函数为例,语法如下。
SELECT AVG ([ALL/DISTINCT] column_name)
FROM table_name
与聚合函数分不开的东西那算是分组了
GROUP BY子句创建分组
SELECT column, SUM(column)
FROM table
GROUP BY column
说明:GROUP BY子句依据column列里的数据对行进行分组,即具有相同的值的行被划为一组。它一般与聚合函数同时使用。当然,这里的SUM()函数也可以是其他聚合函数。所有的组合列(GROUP BY子句中列出的列)必须是来自FROM子句列出的表,不能根据实际值、聚合函数结果或者其他表达式计算的值来对行分组。
GROUP BY子句根据多列组合行
SELECT DNAME,TSEX, COUNT(*) AS TOTAL_NUM
FROM TEACHER
GROUP BY DNAME,TSEX
ROLLUP运算符和CUBE运算符 主要用语扩展,暂时不写.以后添加.
HAVING子句
GROUP BY子句分组,只是简单地依据所选列的数据进行分组,将该列具有相同值的行划为一组。而实际应用中,往往还需要删除那些不能满足条件的行组,为了实现这个功能,SQL提供了HAVING子句。语法如下。
SELECT column, SUM(column)
FROM table
GROUP BY column
HAVING SUM(column) condition value
说明:HAVING通常与GROUP BY子句同时使用。当然,语法中的SUM()函数也可以是其他任何聚合函数。DBMS将HAVING子句中的搜索条件应用于GROUP BY子句产生的行组,如果行组不满足搜索条件,就将其从结果表中删除。
HAVING子句与WHERE子句
HAVING子句和WHERE子句的相似之处在于,它也定义搜索条件。但与WHERE子句不同,HAVING子句与组有关,而不是与单个的行有关。
* 如果指定了GROUP BY子句,那么HAVING子句定义的搜索条件将作用于这个GROUP BY子句创建的那些组。
* 如果指定WHERE子句,而没有指定GROUP BY子句,那么HAVING子句定义的搜索条件将作用于WHERE子句的输出,并把这个输出看作是一个组。
* 如果既没有指定GROUP BY子句也没有指定WHERE子句,那么HAVING子句定义的搜索条件将作用于FROM子句的输出,并把这个输出看作是一个组。
1.
SELECT DNAME, COUNT(TSEX) AS num_girl
FROM TEACHER
WHERE TSEX='女'
GROUP BY DNAME
2.
SELECT DNAME, COUNT(TSEX) AS num_girl
FROM TEACHER
GROUP BY DNAME
HAVING TSEX='女'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04