
“指标体系”这个概念是应用比较广泛的,我们从正式出版物中摘取一个定义:
指标体系,即统计指标体系,是由一系列具有相互联系的指标所组成的整体,可以从各个侧面完整地反映现象总体或样本的数量特征。
统计指标体系从其功能和作用不同,可分为描述统计指标体系,评价统计指标体系和预警统计指标体系三种。描述统计指标体系是由若干对社会经济活动状况做出完整而系统描述的基础指标所组成的。评价统计指标体系是由若干对社会经济行为结果进行比较、评估、考核,以检查其工作和综合效益的统计指标所组成。预警统计指标体系主要用于对社会经济宏观运行的监测,并根据指标值的变化,预报社会经济即将出现的不平衡状态、突发事件及某些结构性障碍等。
引自《统计学教程》(主编:王怀伟 清华大学出版社)
简而言之,指标体系即相互之间有逻辑联系的指标构成的整体,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫指标体系。概念说起来比较枯燥,举个大家比较容易理解的例子吧:
上边这张图是我从新浪财经-行情中心截取的上证指数基本指标,左上红框代表指数趋势,中间红框代表市场活跃度,右侧红框代表当天波动幅度。三个红框中的指标,基本可以构成一个最简单的指标体系,用来描述上证市场的现状,属于描述指标体系。
这一部分要告诉大家的是:指标体系的应用范围实际上很广泛,从国家到个人都可以用,请看下图:
(最后一个指标体系算是彩蛋,下次讲)
这一段主要是想告诉大家,除了那些看上去高大上的指标体系之外,生活中有很多事情都可以自己搞个指标体系来量化一下的,比如家庭财务状况啥的……
咳咳……其实你们还是打算看在工作中如何搭指标体系的对吧,下一段就说回正题。
我把搭建一个指标体系的过程总结成12个字:定目标,分指标,找数据,搭体系。
这是第一步,也是最重要的一步(好像这句话我说过很多次了),很多指标体系搭起来之后没办法持续应用,问题基本都出在这一步。
首先要明确,我们搭建一个指标体系的目的为何。通常来说,目标可能包括以下几类:
展现现有业务状况
寻找当前业务问题
预测业务的发展趋势
评估某个政策/措施/活动是否达到预期目标
找出下一步工作的方向
…………
具体目标可能会包含以上的一类或几类,需要根据目标来确定选择哪些指标。
明确目标后,需要进行指标选择,从大量的指标中选出或造出可以用于达到目标的指标。
选择指标时,建议分以下三步:
首先,寻找已有的可直接用于满足目标的指标体系,如可以找到,则在上面进行小幅度的修改,以适应目标需求;
其次,如果无法找到直接可用的指标体系(实际操作中这种情况出现比率超过50%),则参考相近指标体系,构建自己的指标。
最后,如果相近指标体系也没有(…………你在搞创新产品咩?带我一个),就要深挖问题的根源,然后自己造指标。但现实生活中碰到这种事的几率实在太低了……
指标定好之后,分类取数,利用数据来计算指标值。
数据来源无外乎以下几种:
自有产品/经营数据
政府/第三方公开数据
自行/委托第三方调研数据
购买数据
……
在此处需要注意,切忌从数据出发制造指标……
搭体系这部分,简单来说就是:要给指标及指标的变动之间提供逻辑解释,要能够以单个或多个指标的组合来给出对现实情况的解释。
上边写了这么多,我估计很多同学没看懂,没关系,我们来举个例子:
用户消费决策漏斗
多年以来,品牌营销人员通过“漏斗模型”来理解消费者决策过程——消费者从脑海中的几个潜在候选品牌开始(漏斗顶端),然后在自上而下的决策过程中逐步削减品牌的数量,最后选定一个将要购买的品牌——并在漏斗的每个关键节点处对消费者进行单向推送式的营销活动。
![]()
这个漏斗是一个典型的指标体系,里边有两类指标:漏斗每个阶段的消费者数量,以及漏斗层与层之间的转化率。前者代表规模,后者代表效率,这样通过指标之前的组合,可以找到问题的解释。
例如,本月“购买数量”指标有下降且幅度较大,通过其他指标可进行如下分析:
是否从考虑到购买的转化率下降了?
如转化率不变,是否考虑的群体数量有所减少?原因是因为品牌认知到考虑的转化率下降,还是因为品牌认知的人数变少?
如果是因为品牌认知的人数变少,那么原因是什么?
这样通过指标体系来分析问题,可以深挖问题的根源,避免头疼医头,脚疼医脚的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02