
数据分析在产品优化中究竟会带来怎样的力量
火爆全球的 Instagram 的初衷也不是图片社交应用,它的前身是一款包含了社交、签到等各种功能的失败的应用,但是 Instagram 最终通过数据分析找到了其用户增长关键点,获得了爆发式增长。暗藏潜力的功能是不是正在被你默默忽视?数据分析在产品优化中究竟会带来怎样的力量?如何才能像Instagram一样找到用户增长关键点?
1. 一款失败的全能应用
Instagram 的 CEO Kevin Systom 在 Quora 上分享产品起源时说到,他们最早开发的是一款基于位置的社交应用,叫做 Burbn,简单来说就是:
用户在特定位置签到并制定规划,同时还可以赚取点数,当然还包含分享聚会照片的功能。
这是 Burbn 的产品截图:
但这是一款失败的全能应用,因此你可能都没有听说过,它包括了签到/游戏/图片分享/社交媒体等功能,正如联合创始人 Krieger 说的那样:在我们尝试去解释我们所做的事情的时候,对方总是很茫然。
于是他们做了一个决定:专注于照片共享,停止其他所有的功能。一个简单的照片共享应用被规划出来,这个产品就是后来火爆全球的 Instagram。
2. 产品数据中的机遇
但是,这不是一个简单的决定。
Kevin 和 Krieger 在对 Burbn 的数据分析中发现,用户虽然不用 Burbn 来进行签到,但是附带的照片共享功能却十分受欢迎,并引起了疯狂地发布和共享。他们便开始注意到用户倾向于使用 Burbn 来分享照片的现象,为此研究了当下的流行应用。
他们很快锁定了 Hipstamatic 和 Facebook :Hipstamatic 看起来很酷,滤镜十分优秀,但很难使用它进行照片分享;而 Facebook 是社交网络之王,但它的 app 同样没有一个过得去的照片共享功能。Systrom 觉得在 Hipstamatic 和 Facebook 之间应该有一个点可以做。
于是他们最终只留下了 Burbn 的照片、评论和按赞功能,并增加了滤镜。
几个月后,专注于图片社交分享的 Instagram 正式推出,上线一天获得 25,000 个用户,三个月后这个数字达到100 万。
Systrom 最初发表在 Instagram 的照片:
也是这一年10月,iPhone 4 发布,其优质的摄像头使得用户很愿意拍摄并分享照片,于是 Instagram 的用户量继续爆发式地增长。
这是在 Instagram 上用滤镜修饰过的图片:
3. 先做“简单而重要”的事情
在 Instagram 五周年的时候,创始人们分享了他们的做事原则——先做简单的事:
这个原则在最开始的时候已经成型了,因为当时我们只有两个人,因此每次面对新挑战的时候,我们都需要确定一个最快速,最简单的解决办法。
如果当时我们对一切事情都作长远考虑,那么我们可能会因为什么也做不了而瘫痪。
选择最重要的问题去解决,并且选择最简单的解决方法,这样才能支撑起我们指数式的增长。
但是,怎样确定最重要的事情呢?这时就需要对数据进行即时的分析和判断,找到用户增长的关键点。(增长黑客的力量:这10家公司凭什么估值过百亿?)
相比于 Burbn 时期的全能定位,Instagram 的追求很简单,产品思路很清楚,就是让用户能快速发布一张好看的图片。
这是Instagram 早期欢迎页面:
同时 Instagram 团队下了很大功夫提升用户体验,在用户选择滤镜时,就已经开始上传图片,而不是等用户按下上传按钮之后,以此缩短最终上传步骤所需时间;与此同时第一个版本中,点击三次就可以发布照片,用最少的步骤分享到其他社交网站,堪称简洁的典范。
他们把功能单一化的意义体现得淋漓尽致,以至于整体的布局和功能,从开始到现在并没有很大的改变。
这个是Instagram 初期页面:
正如 Instagram 设计主管 Ian Silber 所说:
“我向人们展示 Instagram 的第一张产品截图,然后,他们会奇怪,我们到底做了些什么?我们忠实于 Instagram 的原版,但是,我们改变了一切——就像是为一辆移动中的汽车添加了新的引擎和部件。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04