
大数据时代,保护用户数据不能因噎废食
据国外媒体报道,人们习惯谈论Facebook与Google如何使用个人数据,但由于微软的Windows一直游离在互联网经济之外,因此很少被纳入讨论的范围。但随着最具互联网气质的Windows10的正式推出,关于Windows 10收集用户数据的讨论就多了起来。
保护隐私不可因噎废食
进入“大数据时代”之后,用户数据愈发暴露在“阳光下”,我们可以清楚地看到用户在互联网上的一些行为几乎都会被服务提供方知晓。就像淘宝、亚马逊监视着我们的购物习惯、Google监视着我们浏览网页的习惯,微博了解我们的信中所好,滴滴打车知道我们每天出行的时间的地点,微信似乎什么都知道,包括我们的社交关系和消费能力。而多维度数据结合起来,几乎可以构建出关于一个互联网原住民的一切信息。
但我们是否就要据此放弃给生活带来无限便捷的互联网产品?答案显然是否定的。保护个人隐私不能因噎废食。大数据的年代,个人隐私问题肯定会更集中,但不能因为有风险就拒绝大数据,就像不能因为菜刀可以砍人,就不允许用了是一个道理。
对互联网企业来讲,从用户那里收集到的信息主要包括消费习惯、行为特征、个人数据等,企业可以通过收集这些信息去开展大数据分析,进一步挖掘用户的潜在消费能力,更多元化的价值,从而为用户提供更有针对性的服务。在这个前提下,消费者或用户也许可以让渡一定的个人隐私。
同时,风口浪尖上的Windows10发言人也表述,任何与微软分享的数据,都将有消费者自己决定。换言之,微软不会在任何未经许可的情况下收集用户数据。
用户能做些什么
虽然微软称是否与微软分享数据由用户自身决定,但Windows10很多数据收集机制都是默认开启的。因此我们要明确在什么地方可以关闭,并且是否会影响系统功能?
最活跃的数据收集应用是虚拟助理Cortana。她可以跟踪记录你的网页搜索记录,查看邮件知道你的偏好与日程安排。大部分这类信息都存储在一个可编辑的“记事本”中,这个选项在打开Cortana后便可发现。微软的必应搜索引擎也会存储信息,用户可以点击“设置”——“Managewhat Cortana knows about me in thecloud”进行清除,或者直接前往bing.com/account/personalization调整。
微软表示,公司会用“多种安全技术与流程”保护Cortana收集到的数据。这些数据在传输到微软时是加密的。但执法机构和政府部门也可能会强制微软交出部分数据。
如果不想微软涉入个人生活,你可以选择不要把Windows10与微软帐号连接起来(在安装过程中,当被要求用微软帐号登陆时,选择“创建新账户”以及“不用微软帐号登录”)这种情况下,Windows10的搜索框仍然有效,但Cortana在没有微软帐号的情况下无法使用。内置的反病毒软件仍然可用。
即便不用微软帐号登录,Windows10也可能会以其他很多方式收集数据。尤其是Edge浏览器将必应作为默认搜索引擎,这可以跟踪一些活动(如果不登录就是匿名的),并会让用户看到有针对性的广告。进入choice.microsoft.com调整,用户可以选择停用广告追踪。Edge还会预判你要看的网页,从而提前加载你可能点击的网页。可以在Edge的设置中关掉这一功能。
在Windows的设置菜单中,还有很多其他关于隐私的开关。这其中包括微软接受并分享有关用户电脑UID、地理位置、麦克风、摄像头的种种信息,甚至还包括输入习惯。如果使用Windows10的快速安装,那么所有这些设置都是默认开启的。在“设置”菜单中,用户也可以限定具体应用对这些功能的使用。
关于WiFi密码分享工具
Windows 10中一个名叫“WiFiSense”的功能也有些令人担心。该功能本意是与朋友分享密码,让连接WiFi变得更加轻松。这个功能本身没有什么问题,不过你应该知道它的机制。
在Windows10下登录WiFi网络时,系统会让你选择与Outlook.com、Facebook以及Skype上的哪些联系人共享登录。如果选择了,WiFi登录密码便会存储到微软的加密服务器中,朋友在需要时便可收到这些密码——他们看不到密码本身的内容,只是能登录WiFi网络。在Windows的WiFi设置中用户可以决定要分享哪些网络。
如果不想有人存储并使用你自己家里网络的密码,登入到朋友的电脑上关闭分享复选框。你也可以在WiFi网络的名称上加入“_optout”的字样,避免使用这项功能。
用户数据需要保护,但不能因噎废食,为了保护所谓的“隐私”而放弃对技术可能性的探索。未来5-10年,依然会是大数据的时代,它会对我们的生活方式带来前所未有的影响,对于用户隐私的讨论也不会停止。但影响最强烈的绝不在技术层面,而是对我们世界观、价值观、人生观的改造,以及对看待事物角度的转变。也许到那时,我们就会意识到“个人隐私”也有暴露在阳光下的必要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08