京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用?你先搞定数据获取再说
虽然大数据已经变得更像一句营销术语,但是它仍有巨大的潜力没有被挖掘出来。不过,得先把数据获取这个大麻烦解决了。
企业在面对数据的时候,比知道怎么处理更多的情况,是在这些数据里漫无目的的游泳。遗憾的是,太多的公司将这种现象与大数据本身关联起来。从技术角度来说,大数据是非常具体的一件事――结构化数据(企业的专有信息)与非结构化数据(社交媒体数据流和政府新闻源之类的公共数据源)的结合体。
如果你将非结构化数据覆盖在结构化数据之上,通过分析软件将其可视化,你就会得到过去从未有过的洞察力――预测产品销售、更精准地目标用户、新的市场机遇,等等。
大数据不再像过去几年一样,受限于工具缺乏的问题。那时候搞大数据意味着团队里必须有数据科学家,还会被R和Hadoop之类的开源工具搞得心烦意乱。
如今,多少公司都争着帮你可视化大数据:从Tableau、Qlik、TIBCO和MicroStrategy之类的专业公司,到微软、IBM、SAP和甲骨文之类提供端到端服务的厂商,不一而足。
不过,据上周出席奥兰多中级市场CIO论坛/中级市场首席营销官(CMO)论坛的IT主管们声称,许多公司在大数据分析中最头疼的问题,其实是如何获取数据。
一位CIO说:“我们IT部门的最大问题,是我们如何才能将数据获取进来,这件事非常麻烦。”
这种说法也得到了相关数据的证实。
数据集成公司Xplenty开展的一项调查声称,三分之一的商业智能专业人员把50%至90%的时间,花在了清理原始数据和将数据录入到公司的数据平台的准备工作上。这种现象的原因,可能与只有28%的公司认为自己能从数据中获得战略性价值有很大关系。
数据清理的问题还包括,眼下IT行业许多最抢手的专业人员,正在花大量时间处理这项让人晕头转向的工作:在分析数据之前先筛选并组织整理数据集。
这显然对于数据的可扩展性非常不利,也严重限制了大数据的潜力。随着物联网不断发展,收集更多的数据对我们来说将越来越容易,这个问题只会变得更严峻。
有三种可能的方法有望解决这个问题:
1. 大数据分析软件不断完善――许多这些公司在过去五年时一直投入大量精力在大数据领域,减轻数据清理环节压力的工具不太可能在短期内出现重大突破,但有望实现逐步改进。
2. 数据准备人员成为数据科学家的助手――正如律师助理帮助律师处理重要的基础工作,数据准备人员也会帮助数据科学家处理基本上同样的底层任务。我们已经在某种程度上看到了这一幕。
3. 利用人工智能清理数据――另一种可能性是,用来清理、筛选和分类数据的软件和算法将被编写出来。这一幕极有可能出现,但是我们还应预料到,这也不是“银弹”。微软、IBM和亚马逊正在致力于用人工进行软件无法处理的数据标记工作――而这正是全球自动化和算法领域的三巨头。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23