京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用?你先搞定数据获取再说
虽然大数据已经变得更像一句营销术语,但是它仍有巨大的潜力没有被挖掘出来。不过,得先把数据获取这个大麻烦解决了。
企业在面对数据的时候,比知道怎么处理更多的情况,是在这些数据里漫无目的的游泳。遗憾的是,太多的公司将这种现象与大数据本身关联起来。从技术角度来说,大数据是非常具体的一件事――结构化数据(企业的专有信息)与非结构化数据(社交媒体数据流和政府新闻源之类的公共数据源)的结合体。
如果你将非结构化数据覆盖在结构化数据之上,通过分析软件将其可视化,你就会得到过去从未有过的洞察力――预测产品销售、更精准地目标用户、新的市场机遇,等等。
大数据不再像过去几年一样,受限于工具缺乏的问题。那时候搞大数据意味着团队里必须有数据科学家,还会被R和Hadoop之类的开源工具搞得心烦意乱。
如今,多少公司都争着帮你可视化大数据:从Tableau、Qlik、TIBCO和MicroStrategy之类的专业公司,到微软、IBM、SAP和甲骨文之类提供端到端服务的厂商,不一而足。
不过,据上周出席奥兰多中级市场CIO论坛/中级市场首席营销官(CMO)论坛的IT主管们声称,许多公司在大数据分析中最头疼的问题,其实是如何获取数据。
一位CIO说:“我们IT部门的最大问题,是我们如何才能将数据获取进来,这件事非常麻烦。”
这种说法也得到了相关数据的证实。
数据集成公司Xplenty开展的一项调查声称,三分之一的商业智能专业人员把50%至90%的时间,花在了清理原始数据和将数据录入到公司的数据平台的准备工作上。这种现象的原因,可能与只有28%的公司认为自己能从数据中获得战略性价值有很大关系。
数据清理的问题还包括,眼下IT行业许多最抢手的专业人员,正在花大量时间处理这项让人晕头转向的工作:在分析数据之前先筛选并组织整理数据集。
这显然对于数据的可扩展性非常不利,也严重限制了大数据的潜力。随着物联网不断发展,收集更多的数据对我们来说将越来越容易,这个问题只会变得更严峻。
有三种可能的方法有望解决这个问题:
1. 大数据分析软件不断完善――许多这些公司在过去五年时一直投入大量精力在大数据领域,减轻数据清理环节压力的工具不太可能在短期内出现重大突破,但有望实现逐步改进。
2. 数据准备人员成为数据科学家的助手――正如律师助理帮助律师处理重要的基础工作,数据准备人员也会帮助数据科学家处理基本上同样的底层任务。我们已经在某种程度上看到了这一幕。
3. 利用人工智能清理数据――另一种可能性是,用来清理、筛选和分类数据的软件和算法将被编写出来。这一幕极有可能出现,但是我们还应预料到,这也不是“银弹”。微软、IBM和亚马逊正在致力于用人工进行软件无法处理的数据标记工作――而这正是全球自动化和算法领域的三巨头。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01