京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售业大数据应用应运而生
首先从产业发展的需求来看,大数据可以帮助零售企业来洞察消费需求,零售企业在面临市场的变化,消费需求变化这样一个大的背景下,需要根据消费者需求的变化来调整我的战略。而这个时候就需要大数据技术来做支撑,在充分了解消费者需求的前提下,企业要重新定义自己的价值,这个时候也需要大数据来做支撑。第三个我们看到目前线上线下趋同这样一个趋势已经非常明显了,线上企业通过电商平台或者移动平台来发展线上的业务,线上电商企业来开展线下的业务,全渠道零售这种模式离不开大数据的支撑。从产业创新模式来看,一个是C2B,会把原来以卖方为主的模式转移到以买方为主,而由用户的购买来驱动企业的生产,在这个过程中需要三个支撑体系。一个是需要非常个性化的营销,第二个需要非常柔性化的生产,第三个需要社会化的供应链。而这三个支撑体系对大数据的要求和大数据的处理提出了更高的要求,这都离不开大数据的一个支撑。
第二个是一个O2O的例子,线上线下融合发展这是未来一个趋势,而在O2O过程中不可避免会产生大量的数据,怎么利用这些数据更精确的为消费者提供服务,让消费者快速的精准的找到自己想要的商品,以及如何帮助消费者购买到质量有保证的商品,这些背后都需要有大数据支撑。这是整个零售业大数据发展的一个契机。
具体来看,目前越来越多的企业已经把大数据上升到战略资产这样一个位置,从中国大数据市场整体规模来看,今年我们预计整体增长的速度应该会超过30%,预计到2016年,整个市场规模会突破100亿人民币这样一个规模。从整个零售企业数据的应用来看,应用率还不到5%,零售业大数据蕴藏潜力是无限的。中国零售大数据目前整体还属于市场启动的一个前期,零售大数据是从2011年在中国开始出现的,马上就受到市场很大的关注。这里我们可以看到像阿里巴巴在2011年底的时候推出了淘宝指数,帮助买家卖家第三方用户群体分析自己的产品走向,或者搜索的一些热点,或者一些销售数据的趋势等等。这个是在2011年底的时候出现的,而中国大数据目前我们判断是属于市场的启动前期。为什么?虽然说已经有很多应用出现,但是主要是在企业内部,进行企业内部资源优化配置这样一个过程当中,或者说资本市场虽然很关注,但是以大数据为核心竞争力来进行上市的企业还没有出现,所以我们判断未来三到五年,中国零售业大数据发展情况还是会从探索期慢慢步入到快速发展这样一个阶段,但是时间还需要三到五年。
接下来我们看一下整个零售业大数据的类型,按照企业的界限,我们可以把零售业大数据分成内部数据和外部数据这两种类型。而从线上企业和线下企业看,在企业发展信息化的初期,其实这个数据的量级,应该是从兆B到TB的级别,类型主要包括交易数据,比如运营数据,比如供应链的数据,比如用户的数据,这是零售企业数据主要的类型。而进入大数据时代以后,零售企业数据的类型从企业的内部扩展到企业的外部,而这个量级也从TB发展到ZB这样一个量级。数据的类型也从刚才提到的一些用户数据、运营数据、交易数据,目前已经发展到了外部一些交互的数据,直到我们的大数据,是这样一个走向。而现在我们来看线上企业和线下企业,从这边这个图可以看到,比如像店铺或者渠道这样一些数据,是具有线下这些属性的,是属于线下范畴。而像流量、转化率等等这些,是线上零售所特有的数据属性。这是整个零售业大数据的类型。
中国零售业大数据发展趋势
第一点是交叉串联,中国零售企业线上线下协同发展或者融合发展是未来一个趋势。怎么样利用大数据来实现线上线下企业交叉串联分析,这是大数据未来需要研究的一个方向。
第二个是价值衍生,可以理解成怎么样实现大数据充分的应用,有两个方向,一个是线上企业,线上企业的方向是把自己整个平台发展成一个数据产品,比如阿里巴巴首先他自己是一个平台,同时他具有自己的技术研发,衍生出来成为一个数据产品,这个产品既包括平台数据产品,也包括后来跨界的金融相关的一些产品。线下企业的做法,如果有多年积累的这些传统的零售企业,做法是我可以开放我的数据资源,比如国美就开放他们的供应链数据,通过与战略合作伙伴的数据共享,让数据价值发挥到最大。
第三个是决策使能,可以理解成利用大数据,帮助更好的做决策。通过数据分析,我们可以得出决策的一个结果,通常来讲,大数据分析出来的决策结果会出乎我们的意料。但是这块数据分析的结果是不以决策者还是领导为转移的,通过数据分析得出这些结论之后,我们再服务于定性商业质感的一些分析,综合作出我们的决策
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26