
未来是数据科学的时代 也是数据科学家的时代
你擅长数学和数据分析,同时会用Python/R语言编程吗?如果你拥有这样的技能组合,那你就有可能成为数据科学家。
无论是在国内还是国外,数据科学都是目前最炙手可热的研究领域,数据分析师、数据科学家也是最火爆的职业。据LinkedIn的最新投票结果显示,“统计分析和数据挖掘” 是2014年最热门的职业技能,美国招聘网站Glassdoor的报告称,数据科学家的平均薪酬比工程师高30%以上,《哈佛商业评论》将之誉为「21 世纪最性感工作」。优异的数据科学家就像独角兽一样珍贵难寻,而且不是只有科技公司在抢人,传统金融界、零售商、广告、教育,几乎所有产业都需要数据科学家从大量数据中挖掘商业价值。
数据科学专业人才可以根据数据规律预测未来,从而帮助公司开源节流。IBM负责大数据业务的副总裁Anjul Bhambhri表示,航空航天制造商Pratt & Whitney现在可以预测出飞机发动机何时需要进行维护,准确率达到97%,这可以帮助它更加有效地开展业务。
亚当-弗洛葛尔(Adam Flugel)是博奇公司的数据科学招聘猎头,他认为“ 未来十年,如果你不是数据大咖,你就别想升到‘首席XX官’的位置上”。
学校教育 vs职业教育
数据科学家需要具备三项基本技能:数学和统计学、计算机能力、在特定业务领域的知识,最重要的素质就是能够快速学习东西。
毫无疑问,你可以在高等学校学到大部分数学和统计学相关的课程,如概率、数理统计、线性代数、多元线性分析等,当然还包括计算机基础课程,如数据结构、软件工程等。但这些都是基础知识,你需要对所从事的行业和企业有足够的领域知识才能理解业务需求,从而把真正的商业问题转化为一个数学问题,这需要大量的实践和行业知识学习,通常这些知识只能从工作中或者通过职业教育才能获取。
对于从事数据科学的人才,与专长于特定编程语言相比,泛型编程技巧远远更加重要,在如今这个时代,技术的发展突飞猛进,语言会很快过时,新的语言则将迅速普及。因此,学东西很快的人,会比单独领域的专家更有前途。目前在数据科学领域比较流行的Python和R语言就是大部分高等学校的专业课程里没有的,这些技能大部分需要在学校外学习。
与此同时,数据科学是一个充满挑战的科学,你需要不断学习各种机器学习算法以应对越来越庞大的数据集。
总之,在某些技能方面,职业教育可以为学习者提供很大的帮助,尤其是特定业务领域的知识方面。可以说,如果你想成为一名数据科学家,不一定非要在学校里学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29