京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来是数据科学的时代 也是数据科学家的时代
你擅长数学和数据分析,同时会用Python/R语言编程吗?如果你拥有这样的技能组合,那你就有可能成为数据科学家。
无论是在国内还是国外,数据科学都是目前最炙手可热的研究领域,数据分析师、数据科学家也是最火爆的职业。据LinkedIn的最新投票结果显示,“统计分析和数据挖掘” 是2014年最热门的职业技能,美国招聘网站Glassdoor的报告称,数据科学家的平均薪酬比工程师高30%以上,《哈佛商业评论》将之誉为「21 世纪最性感工作」。优异的数据科学家就像独角兽一样珍贵难寻,而且不是只有科技公司在抢人,传统金融界、零售商、广告、教育,几乎所有产业都需要数据科学家从大量数据中挖掘商业价值。
数据科学专业人才可以根据数据规律预测未来,从而帮助公司开源节流。IBM负责大数据业务的副总裁Anjul Bhambhri表示,航空航天制造商Pratt & Whitney现在可以预测出飞机发动机何时需要进行维护,准确率达到97%,这可以帮助它更加有效地开展业务。
亚当-弗洛葛尔(Adam Flugel)是博奇公司的数据科学招聘猎头,他认为“ 未来十年,如果你不是数据大咖,你就别想升到‘首席XX官’的位置上”。
学校教育 vs职业教育
数据科学家需要具备三项基本技能:数学和统计学、计算机能力、在特定业务领域的知识,最重要的素质就是能够快速学习东西。
毫无疑问,你可以在高等学校学到大部分数学和统计学相关的课程,如概率、数理统计、线性代数、多元线性分析等,当然还包括计算机基础课程,如数据结构、软件工程等。但这些都是基础知识,你需要对所从事的行业和企业有足够的领域知识才能理解业务需求,从而把真正的商业问题转化为一个数学问题,这需要大量的实践和行业知识学习,通常这些知识只能从工作中或者通过职业教育才能获取。
对于从事数据科学的人才,与专长于特定编程语言相比,泛型编程技巧远远更加重要,在如今这个时代,技术的发展突飞猛进,语言会很快过时,新的语言则将迅速普及。因此,学东西很快的人,会比单独领域的专家更有前途。目前在数据科学领域比较流行的Python和R语言就是大部分高等学校的专业课程里没有的,这些技能大部分需要在学校外学习。
与此同时,数据科学是一个充满挑战的科学,你需要不断学习各种机器学习算法以应对越来越庞大的数据集。
总之,在某些技能方面,职业教育可以为学习者提供很大的帮助,尤其是特定业务领域的知识方面。可以说,如果你想成为一名数据科学家,不一定非要在学校里学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23