
从客户满意度出发建立呼叫中心质检评分标准
背景:提升客户满意度是呼叫中心永恒的话题之一,从大的方面来看,主要是通过优化系统、完善流程、提升座席的服务质量三方面入手。本文主要介绍的,是基于统计学理论建立一套与客户满意度相关的质检评分标准。
首先的一个问题是,贵公司的质检成绩同客户满意度相关吗(前提是在所有QC打分标准都一致的情况下)?如果贵公司的客户满意度同质检成绩相关,那么恭喜你,此篇文章可以跳过了~
如果不相关,那原因是什么呢?
需要先解决一个问题,我们用什么来衡量相关性?
业内的常规做法应该是使用质检成绩同客户满意度来做相关性检验,检验使用的是皮尔森相关系数(即Excel里面常用的CORREL函数),这样的检验方法真的正确吗?
我们先从统计学的角度来看这个问题:
皮尔森相关系数是对于符合正态分布的连续型变量进行的检验,即需要对于N名员工的质检成绩与N名员工的满意度结果数据进行操作,其中满意度的数据获取非常容易,且符合样本量的需求,但是N名员工的质检成绩是否能够反应真实水平呢?
毕竟抽查的样本数量有限,我们来看下《抽样计算器》的计算结果:
假设呼叫中心的客户满意度为90%,那么历史缺陷比为10%;22个工作日,每日接线80通,一个月的样本量为:22×80=1760,计算得到需要抽查的样本量为315通(具体数据见附一)。
会有呼叫中心每个月对于座席的录音抽取超过315通吗?
根据业内水平,一个座席一个月能被抽到20通录音已经非常高了!
统计学结论:通过抽查计算的质检分数并不能代表员工的实际质检成绩,那怎么能让你的质检成绩和员工满意度相关呢?
问题随之而来,究竟如何判定质检成绩和客户满意度的相关性?我们的质检标准究竟是不是和客户的实际需求相关?
其实操作很简单:我们引入单通录音评分和单通录音客户满意度的相关性,即使用Logistic回归分析方式对于N列离散数据计算其相关性。
单通录音打分表事例如下:
那我们的这个打分表和客户评价的满意度的相关性是多少呢?
我们来使用JMP软件中的Logistic分析操作,得出W检验数据如下:
可以看出这三个评分标准与客户满意度的卡方值非常高,且P值低于0.005,表明此标准与客户满意度相关。
同时我们也可以使用JMP中特有的“刻画器”工具来进行预估,即我们能够清楚的知道这三项的质检成绩对于满意度的影响情况。
如果这三项都得1分的情况下,客户的不满意度为3%
如果这三项都得0.7分的情况下,客户的不满意度为32%
备注:此数据结论是基于200通录音打分后的结果
我们已经找到评估质检标准同客户满意度相关性的计算模型了,那么相信你现在一定迫不及待要看看自己公司的打分表是否和客户满意度相关,很遗憾地告诉你,不出意外的话,你们的质检标准会和客户满意度相关性很差的,为什么?
我们从业务的角度来看这个问题:
质检评分标准很多东西都是公司要求的,例如称呼客户姓氏、要确认客户问题、语速适中语调上扬等等,更不用说后台的CRM录入、流程的执行(客户是不会关心公司的流程的)、工单派发准确率等等了,但是也别灰心,通过这个方式,如果能够找到2~3个打分标准有较高的相关性就已经非常好了!
举例:
以上内容希望对于大家制定服务中心质检评分标准时有所帮助,谢谢!
附一:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29