
分析零距离 数据可视化产品选型指南
大数据的核心不是“大”,也不是“数据”,而是蕴含在其中的商业价值。作为挖掘数据背后潜在价值的重要手段,商业智能和分析平台成为大数据部署中的关键环节。然而,获取价值的难点并不在于应用的部署,而在于专业数据分析人才的缺乏。市场研究机构IDC甚至认为,数据分析人才的欠缺可能会成为影响大数据市场发展的重要因素。
“让每个人都成为数据分析师”是大数据时代赋予的要求,数据可视化的出现恰恰从侧面缓解了专业数据分析人才的缺乏。Tableau、Qlik、Microsoft、SAS、IBM等IT厂商纷纷加入数据可视化的阵营,在降低数据分析门槛的同时,为分析结果提供更炫的展现方式。为了进一步让大家了解如何选择适合的数据可视化产品,本文将围绕这一话题展开,希望能对正在选型中的企业有所帮助。
一、数据可视化概述
数据可视化是技术与艺术的完美结合,它借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以意义;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。
维基百科对数据可视化的定义较为权威,它认为数据可视化是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。
1.发展历史
数据可视化的历史可以追溯到二十世纪50年代计算机图形学的早期,人们利用计算机创建出了首批图形图表。到了1987年,一篇题为《Visualization in Scientific Computing(科学计算之中的可视化,即‘科学可视化’)》的报告成为数据可视化领域发展的里程碑,它强调了新的基于计算机的可视化技术方法的必要性。
随着人类采集数据种类和数量的增长,以及计算机运算能力的提升,高级的计算机图形学技术与方法越来越多的应用于处理和可视化这些规模庞大的数据集。二十世纪90年代初期,“信息可视化”成为新的研究领域,旨在为许多应用领域之中对于抽象的异质性数据集的分析工作提供支持。
当前,数据可视化是一个既包含科学可视化,又包含信息可视化的新概念。它是可视化技术在非空间数据上新的应用,使人们不再局限于通过关系数据表来观察和分析数据信息,还能以更直观的方式看到数据及数据之间的结构关系。
2.市场调查
IT168网站在2014年3月进行了一项有关数据可视化的调查,从中可以看出,当前已经部署数据可视化的企业仅为15%,但有56%的企业计划1-2年内部署相关应用。从企业部署可视化的目的来看,排在前三位的分别为:通过可视化发现数据的内在价值(36%)、满足高层领导的决策需要(30%)和满足业务人员的分析需要(25%),仅有9%的企业选择需要更美观的展现效果。
▲数据可视化知名度、流行度和领导者调查
在针对Tableau、Qlik、Tibco software、SAS、Microsoft、SAP、IBM和Oracle八家数据可视化产品和服务提供商的调查中,笔者分别从知名度、流行度和领导者三个角度进行分析。从知名度来看,八家厂商几乎不分先后,只有微小的差距;从流行度来看,SAP、IBM和SAS占据前三位,所在比例分别为19%、18%和17%;从领导者来看,Tableau以40%的优势遥遥领先,这与2014年Gartner的魔力象限排名也非常吻合。
3.技术趋势
数据可视化的思想是将数据库中每一个数据项作为单个图元元素,通过抽取的数据集构成数据图像,同时将数据的各个属性值加以组合,并以多维数据的形式通过图表、三维等方式用以展现数据之间的关联信息,使用户能从不同的维度以及不同的组合对数据库中的数据进行观察,从而对数据进行更深入的分析和挖掘。
传统的数据可视化工具仅仅将数据加以组合,通过不同的展现方式提供给用户,用于发现数据之间的关联信息。近年来,随着云和大数据时代的来临,数据可视化产品已经不再满足于使用传统的数据可视化工具来对数据仓库中的数据抽取、归纳并简单的展现。新型的数据可视化产品必须满足互联网爆发的大数据需求,必须快速的收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。因此,在大数据时代,数据可视化工具必须具有以下特性:
(1)实时性:数据可视化工具必须适应大数据时代数据量的爆炸式增长需求,必须快速的收集分析数据、并对数据信息进行实时更新;
(2)简单操作:数据可视化工具满足快速开发、易于操作的特性,能满足互联网时代信息多变的特点;
(3)更丰富的展现:数据可视化工具需具有更丰富的展现方式,能充分满足数据展现的多维度要求;
(4)多种数据集成支持方式:数据的来源不仅仅局限于数据库,数据可视化工具将支持团队协作数据、数据仓库、文本等多种方式,并能够通过互联网进行展现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15