京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多大数据应用的实施似乎都是在一个现有的数据仓库上,添加一个或多个新的大容量数据流,还有一些支持数据存储和业务分析的专业软硬件。数据存储问题通常是通过部署一个专门的硬件一体机来协调,这样就可以在存储大量数据的同时还能够提供超快的数据访问。
在这样的情况下,我们还需要考虑数据库设计的问题么?
大数据环境下的数据建模
大多数DBA认为:良好的数据库设计是系统和应用程序设计的一部分。很多的业务需求,如数据可用性,清理处理,还有应用性能都可以利用特定的数据库设计加以解决。
那么对于大数据又如何呢?有趣的是,为大数据业务分析提供软硬件解决方案的供应商总是宣称数据库设计并不是那么重要。他们认为,由于数据是以专门的格式进行存储的,所以大多数数据库设计便没有了用武之地。
在这个问题上的困惑通常是源于对解决方案要以何种特殊的方式执行大数据查询的误解。简单来说就是,在大多数情况下,数据会存储在两个 地方:你当前的生产数据库管理系统(DBMS)和新型专用的一体机。当前的生产流程是提取,转换并加载数据到当前DBMS,继续按原样操作,还有一个额外 步骤:每当你加载数据到一个表的时候,你还要确保新数据也能被加载到新一体机中去。
在DBMS加载成功后,便可以马上把数据加载到一体机,或者可以供后续执行分批处理。而重要的是,在任何大数据查询使用已加载数据来获得性能改善之前,必须先把数据加载到一体机。
数据库设计是质量的保证
有质量的数据库设计意味着什么呢?一般来说,数据库设计开始于数据模型和定义之间关系的业务规则。例如,订单总是与客户相关的,并且客户可能没有订单或者有多个订单。有了这些东西以及数据元素定义和属性,数据库设计就可以在以下领域解决,处理或是降低风险:
通过自动数据元素有效值检查来协助避免缺陷;
在应用构建和测试期间允许缺陷检测和修复;
尽可能让数据验证接近其源头;
提供稳定性,可靠性,数据可访问性和系统扩展性。
数据库设计人员的做法有什么差别?
糟糕的数据库设计对技术支持的影响非常之大,他们必须实时处理系统问题,这样就会抬升定位和解决问题的成本。其在产品行为上还会体现为惹恼或是赶走客户。而与糟糕设计相关的最常见的问题就是非常差得应用性能和数据冲突。
典型的修复方法包括数据库重组或重新设计,如添加表索引和改变表分区和聚簇。然而,在大数据环境中,这些方法在专用一体机中通常是行 不通的。它们只会存在 于数据库的基本表中。这是问题的症结所在:尽管供应商声称你所有的数据都可以迁移至专用一体机,但这绝不是最佳的解决方案。
让数据在主数据库管理系统和一体机之间共存是最好的方法,其原因如下:
避免单点故障。专 用一体机往往存折一个单点故障。虽然有供应商和支持人员的努力,但是一体机中的软硬件,网络连接和流程都可能会发生故障。如果是这样,如何才能进行满意的 查询呢?数据协同定位在数据库管理系统中,查询结果可以通过访问基本表得以满足。当然,性能肯定会受到影响;但是,如果不这样做的话,在有人修复这一问题 之前,你的大数据应用都会是不可用的。
提供数据卸载。查询并非是数据的唯一消费方。一种常见的用法是将生产数据卸载到测试环境。此外,某些第三方供应商软件工具会直接访问本地数据库中的数据,而这在一体机中是不可用的,因为数据是以专门的格式进行存储的。
备份和恢复。最常见的备份和恢复工具都是以那些驻留在数据库中的数据为基础的。而第三方供应商工具通常用于高性能备份和恢复,包括索引恢复。这些备份是针对基本表和表空间执行的,而非一体机。
某些性能状况。在某些情况下,SQL查询在一体机中无法执行。这些限制都是定义在手册中的,并且随着供应商一体机和版本的不同而不同。在这些情况下,你别无选择;你必须访 问基本表并接受性能的下降。其中一些限制包含了特定的SQL语法,例如可滚动游标,动态SQL,使用多个字符编码方案,某些相关表表达式,以及使用某些内 置函数。
大数据的数据库设计
因为你要同时在DBMS和专用一体机中保存数据,所以标准数据库设计规则对你来说仍然适用。有趣的是,由于一体机的存在,如今某些规则得以扩展或是变得更加复杂。下面是一些注意事项:
对索引的需求。索 引服务于 多种需求:它们可以赋予数据元素唯一性,它们可以赋予参照完整性关系,它们可以定义主键,并且它们可以定义额外访问路径。最后一项是十分重要的。 在大数据环境中,我们的想法是把长时间运行的查询放进一体机中以进行高速处理。如果某些存在的索引仅仅是提供可选访问路径,那么可能就不再需要它们了。数 据库设计或是重新设计应该包括对所谓性能索引的检查。如果此索引不再被查询所用,那么就可以删除它们,从而节省表数据恢复所需要的磁盘空间,处理时间和恢 复时间。
删除一体机的SQL限制。通常来说,数据的业务规则决定着数据库设计的部分内容。这包括进行物理分区以允许更快 的查询和更简便的数据清理,诸如字段约束在内的数据元素域检查,以及用于支持参照完整性规则的主键和外键定义。接着,应用程序开发人员会编写SQL查询来 访问数据。此外,用户可能拥有的报告工具会自动为查询和报告生成SQL代码。因为SQL查询语法和功能取决于数据库设计,所以设计人员需要对一体机限制熟 稔于胸。
为高速一体机的数据加载进行设计。现在正常的数据库加载过程包含一个额外步骤:将数据加载进一体机。如何才能对此以最佳的方式实现呢?这主要取决于你的应用和数据波动程度,因此要考虑以下变量:
定期批量加载(每天,每小时)一体机,但要明白其中的数据并不完全是最新的。
细流加载,基本表中的记录有过更新的地方会同步传送至一体机。这样就会保持一体机数据最新,但是记录的处理要比批量加载缓慢许多。.
总结
虽然数据库软硬件方面的进步可以将数据查询的速度提升一个档次,但大数据和一体机并没有把对良好数据库设计的需求弃之不用。实际上,设计人员有更多的事情需要去考虑:备份和恢复,索引管理,多途径数据访问,以及SQL限制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27