
什么是大数据?先了解三个概念:数据沉淀、数据挖掘和数据呈现
大数据咱听的够多了,百度一下,就“为您找到相关结果约7,150,000个”,可它到底是个什么东西,解读甚多,眼花缭乱的没个准。本文整理修改自知乎的一个问答,作者是大数据解决方案公司一面数据的创始人何明科,他尝试用大白话解释了数据沉淀、挖掘、呈现三个概念,从中我们也能看到整个行业的大致状况。如有补充,欢迎评论互动~
对于国内数据分析市场,我们感觉如下:
市场巨大,许多企业(无论是互联网的新锐还是传统的企业)都在讨论这个,也有实际的需求并愿意为此付钱,但是比较零碎尚不系统化。目前对数据需求最强烈的行业依此是:金融机构(从基金到银行到保险公司到P2P公司),以广告投放及电商为代表的互联网企业等。
尚没出现平台级公司的模式(这或许往往是大市场或者大机会出现之前的混沌期)。
To B服务的氛围在国内尚没完全形成,对于一些有能力的技术公司,如果数据需求强烈的话,考虑到自身能力的健全以及数据安全性,往往不会外包或者采用外部模块,而倾向于自建这块业务。
未来BAT及京东、58和滴滴打车等企业,凭借其自身产生的海量数据,必然是数据领域的大玩家。但是整个行业很大而且需求旺盛,即使没有留给创业公司出现平台级巨型企业的机会,也将留出各种各样的细分市场机会让大家可以获得自己的领地。
对于数据业务,按照我们的理解,简单将其分为三块:数据沉淀、挖掘和可视化,每一块分别对应不同的模式及产品或服务。(数据挖掘业务又被细分为分析、理解及存储。)下面会进行简单介绍,其实从我们的业务也可以看到一些整个行业的大致状况。
数据沉淀
用大白话说就是数据抓取。目前有四大方式获取数据 :
网络爬虫,用Python及Go等开发自己的爬虫平台,对几十个网站进行每日抓取获得相关信息(详见:能利用爬虫技术做到哪些很酷很有趣很有用的事情? - 何明科的回答)
Wi-Fi接入方案,比如我们自己就开发了一套完整的软硬件方案,优势是高ROI(投资回报比),且免费提供给物业管理者,帮助其实现靠网费赚钱以及推广费赚钱。在与其协商的基础上,获得用户数据。这主要是OpenWRT的开发以及一些智能硬件和客户端的开发。
提供一些图像方面的API,进行图片搜索及人脸搜索,满足客户在图像处理和图像识别方面的一些需求,同时获取相关的图像数据。涉及到一些Machine Learning和Deep Learning的算法,使用C++/Open CV/Matlab等工具或模块。
数据服务需求方自行提供。
这部分是按照数据销售的方式向客户收费。
用大白话说,就是利用数据分析产生深层次有价值的理解。
基于以上各种方式获得的数据,我们可以做最简单的统计分析、用户及品牌理解、用户画像、各品牌或各产品型号之间的关系等等,了解现在和历史并争取预测未来。
常用的工具是Python/R/SPSS等,算法包括最简单的统计、稍微复杂一些的Machine Learning、现在被捧上天的Deep Learning以及Collaborative Filtering等等,也需要使用到Hive等大数据处理平台。
这部分类似于咨询服务,向有需求的客户按照项目收费。
数据呈现
用大白话说,就是把分析结果用最美观和最容易理解的方式(图标或者图形)展现出来。
目前,行业大概有几种玩法:
网站(兼容PC端和移动端):提供给付费的B端客户,不对外公开,大致形式如下:
开专栏和做公众号:都是纯免费的,将一些不敏感的数据和分析分享出去,攒人品赚口碑。
提供一个SaaS的公有云平台,方便大家把自己的数据制作成为便于在网上特别是移动端传播的图文报表。产品的逻辑很简单:读数读图的需求越来越强烈,但是却缺乏这样的工具或者平台来制作图文并茂的内容,即使是Excel,也不能制作出适合于网络传播的图文内容。
常使用的技术是JS+Node.JS+MongoDB等等。
这部分主要是赚吆喝和汇集流量,怎么赚钱目前尚不清楚。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10