
大数据对于游戏运营的六大建议
人们对数据积累和分析的需要已经开始急剧增长,其应用领域开始逐步从天文、气象、军事、基因生物,逐步拓展到搜索、互联网乃至电子游戏等民用范畴。伴随应用商店和社交网络的兴起,游戏市场规模空前扩大,大数据对于游戏运营特别是延长产品寿命的积极作用越发明显,但什么样的数据有价值,如何利用数据的价值,却依然是个难题。
小编盘点了游戏厂商借力大数据时必须注意的六个问题,或许会有一些启示。
一、大数据的价值一定是大浪淘沙
就游戏而言,大数据的价值不言而喻,但是这种价值一定是大浪淘沙,一层一层筛出来的,最后发光的可能只有很小的一点。因此,谁能更快的从海量数据中获得精准数据,谁就能够在商场和战场上取得很好的地位。而一组组数据带给行业的不只是方法论,更是发行模式、营销模式、整体运营等方面的不断拓展和完善。
二、考虑信息安全问题
大数据优势能力的开放对于促进产业发展有着十分重要的意义,但这其中推进较慢的一个重要原因则是考虑到信息安全问题。因此,目前也在不断完善大数据平台,在不久的将来会在保证安全的基础上,秉承开放共赢的理念,帮助业界把数据用好,为整个行业带来更多的收益。
三、提供完整的服务链
作为游戏运营商的平台,首先要提供完整的服务链。对有用性、稀缺性和盈利模式的挖掘,并且要充分了解自身的优势。作为平台商,要帮助入驻的商家共同获益,实现双赢。由此,在大数据服务方面,不应该还停留在原始数据服务的层面。要将这些数据进行筛选和处理,转化成知识,打包成服务。形成可对外开放,可商业化的能力。这样才能使大数据运营真正从中获益。
四、将数据结合,形成指标体系
目前传统的分析报表,只能反应历史数据的情况,不能对未来做更多预测。并且所反应出来的数据是指标型的,其影响性、相关性不明。在建立数据化运营框架时,要本着能通过若干个评估游戏的关键指标,将他们有机的结合起来,形成一个指标体系,最终通过收益来综合反应。同时,也要能发现影响、决定收益的各个因素,并提供游戏的优化方法参考。
五、数据是保障而非根本
数据的重要性早已随着人们的认知被提升到了很重要的层面,但在采访中刘勇表示,数据固然重要,但它只是一个方面绝对不是全面。因此,对于网游而言,游戏本身才是根本,数据则是矫正游戏定位、方向以及提升品质的主要保障。大数据只能作为决策的参考而不是全部,唯数据论是值得警惕的。其实每一个网络媒体都会通过一些浏览数据分析判断得出其受众的使用习惯、消费共性。很长一段时间里,大家都希望通过程序总结公共数据,进而把受众的整体行为分析出来,但后来发现,人还是有一些非理性的东西存在。因此,在收集挖掘数据的同时要有自己的判断、自己的风格,不要试图通过数据把人的情感完全进行数据化的呈现。
六、数据不能取代创新
数据并不是平常人们认为的那样无所不能,至少它不可能取代创新。我们在分析数据时经常会陷入困境,特别是当我们不明白该如何分析获得的数据时。在游戏里,我们通常在事件发生时获取与事件发生有关的参数,如日期、场景、状态等信息。但最重要的数据可能会丢失。例如:一个玩家决定不再玩这个游戏,我们能够知道这个玩家什么时间从服务器下线,但我们不可能知道玩家做出不再继续游戏决定的时间点,因此我们需要从玩家下线时间点回溯推断出这个时间点。我们当然不希望对每一个孤立的玩家都这样做,我们希望通过比较这些离开游戏世界的玩家得到一些共同点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29