
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
前言
R语言不仅在统计分析,数据挖掘领域,计算能力强大。在数据可视化上,也不逊于昂贵的商业。当然,背后离不开各种开源软件包的支持,Cairo就是这样一个用于矢量图形处理的类库。
Cairo可以创建高质量的矢量图形(PDF, PostScript, SVG) 和 位图(PNG, JPEG, TIFF),同时支持在后台程序中高质量渲染!
本文将介绍,Cairo在R语言中的使用。
目录
Cairo介绍
Cairo安装
Cairo使用
1. Cairo介绍
在信息领域中,cairo 是一个让用于提供矢量图形绘图的免费库,cairo 提供在多个背景下做 2D 的绘图,高级的更可以使用硬件加速功能。
虽然 cairo 是使用C语言撰写的,但是当使用 cairo 时,可以用许多其他种语言来使用,包括有 C++、C#、Java、Python、Perl、Ruby、Scheme、Smalltalk 以及许多种语言,cairo 在 GNU LGPL 与 Mozilla Public License (MPL) 两个认证下发布。
2. Cairo安装
系统环境
Linux: Ubuntu 12.04.2 LTS 64bit
R: 3.0.1 x86_64-pc-linux-gnu
Cairo基本库安装
~ sudo apt-get install libcairo2-dev
~ sudo apt-get install libxt-dev
~ R
> install.packages("Cairo")
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded
Warning: ignoring .First.lib() for package ‘Cairo’
* DONE (Cairo)
Cairo使用起来非常简单,和基础包grDevices中的函数对应。
CairoPNG: 对应grDevices:png()
CairoJPEG: 对应grDevices:jpeg()
CairoTIFF: 对应grDevices:tiff()
CairoSVG: 对应grDevices:svg()
CairoPDF: 对应grDevices:pdf()
我常用的图形输出,就是png和svg。
检查Cairo的兼容性:
~ R
> library(Cairo)
> Cairo.capabilities()
png jpeg tiff pdf svg ps x11 win raster
TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
下面比较一下 CairoPNG() 和 png() 输出效果。
1). 散点图
x<-rnorm(6000)
y<-rnorm(6000)
# PNG图
png(file="plot4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot")
dev.off()
CairoPNG(file="Cairo4.png",width=640,height=480)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo")
dev.off()
# SVG图
svg(file="plot-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "plot-svg")
dev.off()
CairoSVG(file="Cairo-svg4.svg",width=6,height=6)
plot(x,y,col="#ff000018",pch=19,cex=2,main = "Cairo-svg")
dev.off()
以下为PNG图:
2). 三维截面图
x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
# PNG图
png(file="plot2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Plot"
)
par(op)
dev.off()
CairoPNG(file="Cairo2.png",width=640,height=480)
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,
theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "Cairo"
)
par(op)
dev.off()
以下为PNG图:
3). 文字显示
library(MASS)
data(HairEyeColor)
x <- HairEyeColor[,,1]+HairEyeColor[,,2]
n <- 100
m <- matrix(sample(c(T,F),n^2,replace=T), nr=n, nc=n)
# PNG图
png(file="plot5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Plot")
dev.off()
CairoPNG(file="Cairo5.png",width=640,height=480)
biplot(corresp(m, nf=2), main="Cairo")
dev.off()
# SVG图
svg(file="plot-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Plot-svg")
dev.off()
CairoSVG(file="Cairo-svg5.svg",width=6,height=6)
biplot(corresp(m, nf=2), main="Cairo-svg")
dev.off()
以下为PNG图:
我们查看两个文件的属性:以png直接生成的图54KB,以CairoPNG生成的图43.8KB。
综上的3个例子,我分辨不出太大区别,只是Cairo感觉更淡、更柔和一些。
大家不妨找一些更复杂的图形来尝试着比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15