京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在SPSS中进行复选题数据分析
复选题分析(Multiple Response)
最近群里经常有朋友在问;“怎样用SPSS输入多项选择题啊?”于是本人整理以往学习资料,希望这些东西能够帮他们解决问题。
一、复选题分析的原理
(一)复选题分析的限制和用途
复选题在许多问卷或数据收集中经常出现,例如:某家旅行社询问采访者最近一年内,曾经搭乘国内四家航空公司(东方、南方、上海、海南)中的哪几家,这就是一个典型的复选题问题。通常这些复选题只是请受访者构选“有“或”无“,亦即该选项只能建立数据时,以命名尺度的”1“与”0“来呈现,但命名量表是精度最低的测量方式,其会限制这些复选题可使用的统计检验分析方法。
复选题经常被使用,但其通常使用的统计分析只有频次分析表与交叉分析表等描述性统计,且不能进行后续所有的检验分析,并且经常被滥用。如果进行非学术性研究,只想了解复选项目的频次分布,则可使用复选题;但如果进行学术性研究,则建议尽量不使用复选题,而尽量使用复选题的变形。例如:询问受访者乘坐各家航空公司的乘坐次数、询问每种减肥方式的使用比重、询问对每种兴趣的偏好程度或所花费的时间等,即将原来的命名量表测量变量变为等距或以上的量表。
(二)如何在SPSS中创建复选题
如何在SPSS中输入多项选者题以及如何进行频次和交叉分析,下面将举例说明。例如调查学生的“上网项目“和”嗜好“两组复选题目,其中“上网项目”包括找数据、网站购物、在线游戏、聊天室等;经常从事的“嗜好“包括打球、看电视、打电动、逛街、唱歌等。
复选题在建立数据文件时,必须将每一个选项设为一个变量,而非一组变量成为一个变量,例如:这里上网项目与嗜好各有4个和5个选项,合计9个选项,则需要新建9个变量,如下图所示:
二、定义复选题分析集(Define Sets)
点击Multiple Response选单下的Define sets,将出现Define Multiple Response sets对话框,如下图所示:
(一)复选题分析集名称(Name)
可将复选题分成多重二分集和多类别集合,最多可以定义20个复选题分析集。每个集合必须有一个唯一的名称。每个复选题分析集都必须指定专属的名称,最多可有7个字符。
在上面的例子中,首先在Set Definition框中选择第一个分析集所定义的变量(找数据、网站购物、在线游戏、聊天室)到右边的Variables in Set框中,然后在Name框中,输入分析集名称“上网项目”,并按下add键之后就会在右边的Multiple Response Sets框中出现“$上网项目“,重复此步骤,定义其他分析集。
(二)复选题分析集的数据编码
复选题可编成二分变量或类别变量:
⑴ 二分变量(Dichotomies Counted Values):选取二分法以建立多重二分集,如果在计数值中输入整数值,则计数值至少会出现一次,而计数值中的每个变量都会变成多重二分集中的类别。
⑵ 选取类别(Categories):会建立多类别集合。在多重类别变量集合类别范围的最小值和最大值中,输入整数值。程序会合计范围内所有不同的整数值,空的类别将不会列在表中。例如:受访者的上网项目不会超过三种的话,就可以只要建立三个而非四个变量,且每个变量有四种代码,每个代码代表一种上网项目,如:1、2、3、4分别代表找资料、网站购物、在线游戏、聊天室,则第一个观测值“陈一”的三种上网代码分别是134.
通常这2种方式所得到的结果是相同的,但建议采用二分变量,因为用0和1较易输入,且每个二分变量皆可当命名量表,可分别针对每个复选题变量进行后续的独立样本T检验与卡方检验。
三、复选题分析频次分不表(Frequencies)
“复选题分析频次分析表”程序可以产生复选题分析集的频次分布表。由Multiple ResponseàFrequencies,可打开Multiple Response Frequencies对话框,如下图所示:
对于多重二分集而言,SPSS会用分析集的变量标记当做输出中的类别名称。如果没有定义分析集变量标记的话,变量名称会当作标记使用。其对应的命令语句如下:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
$嗜好 (打球 逛街打电动 看电视 唱歌 (1))
/FREQUENCIES=$上网项目 $嗜好 .
四、复选题分析交叉表(Crosstabs)
“复选题分析交叉表“程序可产生复选题分析集交叉表。由Multiple ResponseàCrosstabs,可打开Multiple Response Crosstabs对话框,如下图所示:
复选题的Crosstabs为一个变量与多个变量的交叉表,例如用性别与上网项目来分析,对应的程序语句为:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
/VARIABLES=性别(0 1)
/TABLES=性别 BY $上网项目
/BASE=CASES .
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22