
在SPSS中进行复选题数据分析
复选题分析(Multiple Response)
最近群里经常有朋友在问;“怎样用SPSS输入多项选择题啊?”于是本人整理以往学习资料,希望这些东西能够帮他们解决问题。
一、复选题分析的原理
(一)复选题分析的限制和用途
复选题在许多问卷或数据收集中经常出现,例如:某家旅行社询问采访者最近一年内,曾经搭乘国内四家航空公司(东方、南方、上海、海南)中的哪几家,这就是一个典型的复选题问题。通常这些复选题只是请受访者构选“有“或”无“,亦即该选项只能建立数据时,以命名尺度的”1“与”0“来呈现,但命名量表是精度最低的测量方式,其会限制这些复选题可使用的统计检验分析方法。
复选题经常被使用,但其通常使用的统计分析只有频次分析表与交叉分析表等描述性统计,且不能进行后续所有的检验分析,并且经常被滥用。如果进行非学术性研究,只想了解复选项目的频次分布,则可使用复选题;但如果进行学术性研究,则建议尽量不使用复选题,而尽量使用复选题的变形。例如:询问受访者乘坐各家航空公司的乘坐次数、询问每种减肥方式的使用比重、询问对每种兴趣的偏好程度或所花费的时间等,即将原来的命名量表测量变量变为等距或以上的量表。
(二)如何在SPSS中创建复选题
如何在SPSS中输入多项选者题以及如何进行频次和交叉分析,下面将举例说明。例如调查学生的“上网项目“和”嗜好“两组复选题目,其中“上网项目”包括找数据、网站购物、在线游戏、聊天室等;经常从事的“嗜好“包括打球、看电视、打电动、逛街、唱歌等。
复选题在建立数据文件时,必须将每一个选项设为一个变量,而非一组变量成为一个变量,例如:这里上网项目与嗜好各有4个和5个选项,合计9个选项,则需要新建9个变量,如下图所示:
二、定义复选题分析集(Define Sets)
点击Multiple Response选单下的Define sets,将出现Define Multiple Response sets对话框,如下图所示:
(一)复选题分析集名称(Name)
可将复选题分成多重二分集和多类别集合,最多可以定义20个复选题分析集。每个集合必须有一个唯一的名称。每个复选题分析集都必须指定专属的名称,最多可有7个字符。
在上面的例子中,首先在Set Definition框中选择第一个分析集所定义的变量(找数据、网站购物、在线游戏、聊天室)到右边的Variables in Set框中,然后在Name框中,输入分析集名称“上网项目”,并按下add键之后就会在右边的Multiple Response Sets框中出现“$上网项目“,重复此步骤,定义其他分析集。
(二)复选题分析集的数据编码
复选题可编成二分变量或类别变量:
⑴ 二分变量(Dichotomies Counted Values):选取二分法以建立多重二分集,如果在计数值中输入整数值,则计数值至少会出现一次,而计数值中的每个变量都会变成多重二分集中的类别。
⑵ 选取类别(Categories):会建立多类别集合。在多重类别变量集合类别范围的最小值和最大值中,输入整数值。程序会合计范围内所有不同的整数值,空的类别将不会列在表中。例如:受访者的上网项目不会超过三种的话,就可以只要建立三个而非四个变量,且每个变量有四种代码,每个代码代表一种上网项目,如:1、2、3、4分别代表找资料、网站购物、在线游戏、聊天室,则第一个观测值“陈一”的三种上网代码分别是134.
通常这2种方式所得到的结果是相同的,但建议采用二分变量,因为用0和1较易输入,且每个二分变量皆可当命名量表,可分别针对每个复选题变量进行后续的独立样本T检验与卡方检验。
三、复选题分析频次分不表(Frequencies)
“复选题分析频次分析表”程序可以产生复选题分析集的频次分布表。由Multiple ResponseàFrequencies,可打开Multiple Response Frequencies对话框,如下图所示:
对于多重二分集而言,SPSS会用分析集的变量标记当做输出中的类别名称。如果没有定义分析集变量标记的话,变量名称会当作标记使用。其对应的命令语句如下:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
$嗜好 (打球 逛街打电动 看电视 唱歌 (1))
/FREQUENCIES=$上网项目 $嗜好 .
四、复选题分析交叉表(Crosstabs)
“复选题分析交叉表“程序可产生复选题分析集交叉表。由Multiple ResponseàCrosstabs,可打开Multiple Response Crosstabs对话框,如下图所示:
复选题的Crosstabs为一个变量与多个变量的交叉表,例如用性别与上网项目来分析,对应的程序语句为:
MULT RESPONSE
GROUPS=$上网项目 (找资料网站购物 在线游戏 聊天室 (1))
/VARIABLES=性别(0 1)
/TABLES=性别 BY $上网项目
/BASE=CASES .
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02