
选择复合技能企业目标数据分析是正确的
现代企业们期望大数据能为企业服务,或更甚者期望打造一种数据分析文化。但是总是要在投入资源和金钱之前得到几个关键问题答案:
什么是商业案例分析?
应该使用哪一个大数据的工具?
是否应该聘请一个数据分析供应商来处理一切?
如果我们建立了一个内部团队,我们在哪里能得到的分析人才?
最后一个问题我们哪里能得到数据分析的人才,是源自需要满足不断增长的需求。是为企业和消费者数据继续呈指数级增长的数据科学家的报告(有时是有争议的)提出的不足。但是如果一个企业完全致力于数据分析,它将会寻找或培养人才。
除了人才招募,企业面临根本挑战如何是建立一个有效的数据分析团队,其中最佳组合条件包含了技能,背景和个性。
两名高级数据科学家带领各自的数据科学运用方法与CITEworld讨论有关团队组合的问题。
eXelate数字营销数据管理平台供应商的高级副总裁Kevin Lyons 表示:“第一步是定义明确的业务目标,或者至少有一个公司正在努力,如果你不能定义它,你就没有办法去实现它。”
用服务于Google和Facebook的数据科学家们举例,他们必须提供计算机分析方法,让计算机来晚场关于消费者和可以预测的行为。这些类型的数据科学家通常具有较强的数学和计算技能。
相反的,数据科学家通常需要较强的“软”技能,为人类产品制造提供分析,产品生产提供决策。
Dstillery 是一家市场定位于网页数据分析,以帮助其客户进行广告品牌的定位的公司,公司的首席科学家Claudia Perlich说“你需要至少有一个人可以沟通,这个人可以坐下来好好与首席技术官或首席营销官和首席执行官谈谈业务问题,来帮助数据科学家得出什么样的角色,什么样的特殊任务是他们的工作方向。
数据科学家谁必须具有一项基本的技能是可以互通甚至互动业务部门和行政部门,Perlich强调,他们需要一些基本的技术人才挑起大梁。
她说“他们不需要超强的写代码的能力,但他们需要有获取数据的能力,他们需要会一种脚本语言,比如Perl或Python,是为了让他们一旦发现了数据后及时处理,他们不需要概率论,他们需要对统计的事实和结果完全理解,但是他们需要了解真正的数据含义,而不是一个有误导性行综合数据平均值。
Lyons更进了一步,他说他是一名纯粹的,喜爱数据科学的数据科学家。
他表示如果你未来有拥有一个成功数据科学家团队,你需要有数据科学技能,这意味着你需要有坚实的基础,例如计算机科学与建模的统计专业技能,熟悉程序语言,如Java或C,以及熟悉脚本语言如Python,熟悉Unix和Linux。
Lyons还建议用功能性方法来构建你的数据的团队,下面的表述来自eXelate。
他说:“每一个数据项目由四部分组成,第一是理解业务需求,第二是收集和编排,准备数据,第三个是做数据模型,第四是运行出结果。”
Lyons :“我们这里所有的人,谁能理解企业需求,从而把这种需求去变成计划就代表谁有非常好的商业感觉。 我们与数据管理者谁可以准备数据,无论方式是临时或自动的,我们建模的过程可以数字,也可可视化,最后将代码编入自动化系统。
同样,Perlich说Dstillery团队的成员是涵盖所有有效数据分析所需的工作角色的,其中包含了沟通高手,统计学家,编码专家。
Perlich和Lyons的两个冠军数据科学团队都是多样性的。
Lyons 说:“我尽量让尽可能多层次人才出现在我的团队当中,目前我们已经有Linux管理背景人才,有金融计算管理人才,有地理学背景并且是最好的数据可视化专家人才,有些人来自精算学领域,还有人有数据管理经验和人才培训机构工作经验。“
Perlich :“这里有很多来自不同背景的聪明人,他们的好奇心让他们学到了如何得到要自己想要的数据。”
最后,根据Perlich所表述,企业招聘一个单纯数据科学家是完全不必要的。
她说:“他们并不需要了解你所在的行业中,但如果他们足够聪明,是合格的数据科学家,他们可以了解你在一个月左右的行业。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15