
大数据调研,如何实现快全准?
这个时代在快速地朝前发展,旧的习惯总是不断被新的事物改变。比如,互联网改变了人们通过报纸、电视获取信息的习惯,手机和移动支付工具改变了人们出门带钱包的习惯。
现在,又一个传统业务即将被颠覆——因为大数据时代的到来。
自20世纪初市场调查学在美国建立以来,市场调研这项业务已有百年的历史。百年来,市场调研以实证数据和理性分析为基础做出的分析报告一直是企业决策的重要依据。
20多年前,宝洁进入中国市场,将这个在当时较为先进的市场分析方法和策略引进中国。于是,一大批与此相关的公司和团队涌现。据不完全统计,目前全国有超过3,000家调研机构。
那么,调研机构一般如何形成一份调查报告呢?举个例子,某品牌希望了解新产品上市后吸引的客户对象是否符合预期,调研机构接到任务后便开始设计调查问卷,一份问卷包含大约20个问题(如果问题太多,调查对象是会翻脸的),而性别、年龄段、家庭收入这些基本情况却占据了问题的大半;接着派大量的人进行拦截访问或电话访问,一份2,000人的问卷样本通常需要三个月才能完成。
这就是商业获取信息反馈的传统方式,耗时久,效率低。在分秒必争、唯快不破的商业世界里,低效是不被忍受的。事实上,新的更高效的调研方式已经出现,那就是大数据调研。
最新的大数据调研方法通常有三个步骤:获取样本—选取标签—得到结果。
- 通过线上或线下的数据采集方法得到目标人群的样本ID(如新品上市预订的手机号),或是通过Wi-Fi探针技术获取门店到访人群的样本,从中提取目标样本,例如新客户或高活跃度人群。
- 选择要了解的标签类目,比如性别、年龄、购买力、家住小区、职业,如果是服装类品牌还可以关注样本在服装类的购买习惯,或者是寻找异业里的最佳合作,等等。
- 得到结果。
比起传统的市场调研方式,大数据调研的优势显而易见。
一是快。大数据之所以被冠以“大”字,除了数据量大之外,还因为处理速度快。2015年底,大数据应用服务公司芝麻科技与阿里巴巴联合发布了大数据产品“观星”,这是一款可以描绘群体消费者画像的产品。“观星”将线下商业消费数据与脱敏后的线上消费行为轨迹融合,500多个标签可以精准呈现品牌或门店消费者的群体年龄、学历等基础特征及购物偏好、兴趣爱好等行为特征,还同时提供相关行业对比,为实体商业提供基于多维度分析的丰富画像报告。
“观星”在一个月内就产出50多份报告,这几乎是一家中等调研公司两年的工作量。报告的快速产出可以帮助品牌和门店及时地了解到市场变化,抓住商机。毕竟,在互联网时代,唯快不破。
二是全。大数据分析的另一个优势是让数据自己“发声”,从数据里挖掘潜在价值,我们不必知道现象背后的原因,“相关分析”能找出数据集里隐藏的相互关系网,为我们提供新的市场洞见。而这些都是传统市场调研无法获知或是会被忽略的信息。
目前,百度可以根据人的搜索行为知道你是一个待产的母亲还是两个孩子的妈妈;阿里巴巴可以通过购买记录和网购习惯猜测你是白富美还是高富帅,买东西看品质还是等折扣,韩版风还是欧美风,甚至最近是不是在准备旅行,这些都是通过不同的标签维度来刻画顾客。而与阿里巴巴、个推、Talkingdata等多个数据源都已进行连接的芝麻科技可提供超过500个标签维度,是目前行业内分析维度最多最全的,今年预期可以达到1,000个维度标签。
三是准。传统市场调研的基础是抽样分析,而大数据的研究对象是全体用户的相关数据,因此大数据刻画的用户形象更加完整和准确。而在操作过程中,机器不会说谎,不会作弊,结果更可靠。
芝麻科技CEO朱智举过这样一个例子,一家火锅店的老板利用大数据画像后发现,顾客中来自附近某小区的比例远低于预期规划,于是去做了定向的营销推广,一个月后来自这个小区的顾客比例上升了50%,也带动了整体销售提升了10%。
大数据时代已经从基本的数据量堆积进入到数据融合阶段,2015年,阿里巴巴、百度、中国电信等大数据体都分别发布了在大数据融合生态上的计划与产品,这样的融合为数据加上了活力。正如朱智所说,2015年是大数据融合的元年,因为有了融合,大数据不再是以数据规模为目标,而是做加法,因为连接是无穷尽的,连接会让每一个数据充满活力,连接使得更多的应用出现,大数据应用颠覆传统的时代在2016年开始到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18