有时候数字确实需要分享一个美丽的故事分享!
当今社会,数据可视化是至关重要的。没有强大的可视化,几乎不可能在堆积如山的数据中创造或者叙述它的故事。这些故事有助于我们构建策略,并做出明智的商业决策。
R是让数据可视化更加有趣和简单的很好支持。它已经具备了基本的功能,Package提供的外部支持使它成为一个令人开心的工作工具,感谢我们的社区成员。
在所有的包中,ggplot package已经在R中成为了数据可视化的同义词,它可以让你获得更多的控制图,图表和地图,也被称为能创造让人吃惊的图形。我要衷心的感谢Hadley Wickam, 这个成就ggplot2 package的父亲。
在这篇文章中,通过R用户用ggplot package工作中,我已经回答了的一些最常见的问题,所以,下一次当你需要可视化数据的时候,你可以选择下面的任何一个。
注:这篇文章最适合初学者,和中级的具有数据可视化的基本知识的R用户,您可以参考这个完整的数据可视化指南。
现在开始
让我们快速结束可视化热身仪式
数据集:在这篇文章中,我们使用了来自大市场预测的数据集。数据可供下载。
现在我们可以更好的开始了,对变量类进行检查。这将有助于你决定最适合他们制图的类型。
Q1如创建散点图
使用类型:要看连续变量之间的关系时,使用散点图。
让我们快速了解ggplot的代码的结构:
1、 aes-指美学,它包含用于创建图的变量的名称。
2、 geom_point-ggplot提供了很多可以用来代表数据的geoms。因为,在这里我们用散点图,我们用gem_points.
3、 Scale_x_continuous-x 变量是连续的。这个参数是用来表示在x轴改变的信息。
4、 scale_y_continuous-它在Y轴执行与scale_x_continuous相同的任务。
5、 heme_bw –指设置情节的背景。我使用了网格版本。
我们还可以在当前的情节添加一个分类变量(item_type)。检查数据,以熟悉数据集中的可用数据。
我们甚至可以通过创建单独的item_type让分离散点图更好。
在结尾,你需要”缩放”这个图成为一个清晰的视图。放大的版本看起来像这个样子。在这种情况下,参数facet_wrap搞了鬼。它包括了矩形布局中的面。
Q2:如何创建直方图?
使用类型:当我们要绘制一个连续的变量,我们就使用直方图。
Q3:如何创建一个条形图?
使用类型:当我们要绘制一个分类变量或连续变量和分类变量组合时,就使用条形图。
你可以删除coord_flip()参数得到这个垂直条形图。正如你所看到的,我对这个图形尝试了不同的主题。欢迎你用ggplot package来做实验。
为了达到更好的视觉效果,你可以在末端放大这个图形。在这个图中,我分别在x和y轴使用了分类和连续变量。
Q4:如何创建栈条形图?
什么时候使用:它是一个高级版本的条形图。当我们希望可视化组合分类变量时使用。
Q5:如何创建一个箱线图?
使用类型:箱线图被用来绘制分类和连续变量的组合。此图有助于我们分辨数据分类并检测异常。
黑点是异常值。异常检测与排除是成功的数据挖掘的一个重要步骤。
Q6:如何创建一个区域图?
使用类型:区域图是用来显示一个变量或数据集的连续性。这是非常相似的线形图。它是常用的时间序列图。或者,它是用来绘制连续变量和分析的基本趋势。
Q7:如何创建一个热图?
使用类型:热图是用颜色的强度(密度)来显示两三个或多个变量在一个二维图像中的关系。
为了更好的视觉,你可以最后放大这个图表。黑暗的部分表示项目MRP接近50.较亮的部分表示项目的MRP是接近250。
热图也可以产生于图像识别的视觉效果。这可以通过添加一个参数作为插入来完成。
Q8:如何创建一个相关图?
使用类型: 相关图是用来测试数据集的可用变量间的关联程度。创建一个相关图,我们用corrgram package代替ggplot。我意识到用专业软件包创建相关图比ggplot容易多了。
这也很容易解释。颜色越深,变量间的相关性越高。蓝色表示正相关。红色表示负相关。颜色强度表示相关性的大小。
Q9:如何绘制地理地图?
使用类型:地图常被用来可视化某些影响地理位置的一些因素。在R中绘制很容易。
让我们绘制一个参加2016年的ICC世界杯T20的国家。经过研究,我发现今年有16个国家参加。让我们来看看这些国家在世界地图上的位置。
我们会用ggmaps package一起创建这些地图。
这很容易,是不是?我们还可以美化这个地图。如果你不熟悉世界地图,对你来说就很难找出这些国家的名字。让我们用ggmap package的功能设计这个地图。
这样看起来就更好。ggmap package 是与谷歌地图连接的,因此提取详细的地段直接连接。但是我有一个遗憾。如果你仔细看这幅地图,你会发现这个地图是不完整的。西印度群岛没有在这个地图上显示。我试着从多个源中提取数据,但是并没有成功。如果你们中的任何一个能解决这个谜题,请分享你的解决方案吧。
Q10:如何绘制单个命令中的数据集?
我们每个人都在试图在某个时候做到这一步。我们都在寻找一个命令,使用这个命令让我们可以将所有的变量的数据集一次性画出来。这是你的答案。
你可以使用tabplot package 来完成这个伟业。
结尾注释:
我们终于结束一个丰富多彩的旅程!我希望它能让人们开始几次新的丰富多彩的旅程。你可以已经注意到用ggplot 2会容易很多。大多数的代码是重复的,因此你会很快适应它。当你用geoms制作图表的时候要小心,因为这是最主要的设计元素。当我们开始学习这个包时,我问了在不同的节点的所有问题。因此,一篇关于所有问题的文章出现在我的脑海里。
在这篇文章中,我讨论了9种不同的可以用ggplot package绘制的可视化。这些可视化是否能很好的使用取决于提供给它们的变量类型。因此,如果你想画出来,必须要小心变量的类型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03