
从大数据成熟度评估得来的3个有趣的结果
我问了五类与大数据相关的问题
1、组织:你的公司在组织策略,文化,领导和资金在多大层度上支持一个成功的大数据项目?你的公司在分析中有什么价值?
2、基础设施:你的架构是怎样的先进和连贯,来支持大数据自发性的?你的架构中多大程度上支持公司的所有部分和潜在用户?你的大数据开发的方法有多有效?你的大数据开发的方法是如何有效的?什么技术在支持一个大数据的自发性,以及他们是如何融入到你现有的环境中的?
3、数据管理:用于数据分析的数据种类,容量和速度有多广泛,以及你的公司在支持分析上如何管理大数据?(这包括数据质量和处理以及数据集成和储存问题。)
4、分析:在使用大数据分析时,你的公司有多先进?(这包括有效分析的种类,在组织中如何传递分析,以及分析技能发生。)
5、治理:在支持大数据分析程序中,你的公司数据管理策略是如何连贯的?
大数据的成熟阶段
受访者通过这些分类以及每个分类的得分回答了这75个问题,分数与成熟的各个阶段相关,包括新生,预采纳,早期采纳,公司采纳,成熟/有远见。
我们看到了什么?成熟大数据的组织在哪里?
早期——至少对组织进行了评估。大多数的报告说,他们没有大数据的空间,或者大数据只是在实验阶段。
只有一小部分的受访者组织在执行大数据的措施。
当我们在五个维度算平均分时,平均分数在预采纳和早期采纳阶段之间——当组织在考虑大数据以及一些概念可能证明大数据正在进行。
然而,这里有三个值得注意的结果:
1、受访者不在组织中执行。仅仅有一小部分的受访者在组织中执行大数据主张。大约有25%的受访者有一个大数据的路线图或策略。此外,大约1/4的公司有一些处理大数据项目的到位资金。虽然组织者们在类似于,是否你认为他们已经有分析文化的软问题上得分较高,但是分数仍然很多都是在预采纳阶段。
2、数据仓库常常被称为大数据的基础设施。我们询问了受访者大数据的基础设施是什么类型的。大数据的成熟标志是采取一种混合生态系统的方法。换句话说,组织中常有一个数据仓库(或集市)的地方,但是需要用其他工具来补充它。例如,Hadoop或分析平台可能与仓库一起工作。一些组织可能会在云中使用一些基础设施。约三分之一的受访者表示,数据仓库是他们的大数据核心技术。另外的三分之一表示他们没有一个大数据的基础设施。剩下的那部分有一些技术的组合,但是他们往往是孤立的。
3、更先进的分析发生在大数据,但很小范围内。在分析前,组织经常收集他们没有分析的数据。约有一半的受访者表示他们在进行先进的分析。(即预测分析或其他先进技术),但它发生在很小范围内。这里有点不太清楚他们是否将分析大数据作为先进分析工作的一部分。很多被调查的人还在努力把大数据团队聚合在一起。少部分有一个很棒的中心,在那里共享观念,管理已经存在的数据,以及综合训练。
我会继续大数据的成熟度模型评估并分享有趣和显著的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29