京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据安全隐私问题 仍没有得出定论
数据传输、存储、管理、数据分析和数据挖掘已经成为众人关注的焦点,但是这些过程中存在着大量的安全和隐患。大数据传输和存储都是对个人数据的分析整理,是整个大数据环节中的一部分,同时也是最为关键的一个环节。
人们每天在互联网上制造着大量的数据与信息,而这些数据信息在包含了我们每个人的隐私,如果这些数据被人利用,那么后果可想而知,给我们带来的损失也是不可估量的。
相对于个人来说,企业使用的大数据模型较为复杂,从功能角度来看也是不一样的。通常企业的数据来源有多种方式,第一种是企业自身的数据信息,包括对客户资料的整理以及企业内部的数据信息。第二种是来自第三方的平台,比如Facebook、新浪微博这样的社交平台。通常情况下来自第三方平台的海量数据更具有挖掘价值,而来自企业内部的海量数据更具有直接的分析价值。
在每个人的数据信息中存储着数据创造者的很多个人隐私,比如他们每天做了什么。举个简单的例子,谷歌地图上提供了很多公共链接,人们可以点击链接获取希望得到的数据信息,但是这些链接是不安全的,因为你在点击的同时就会留下你所在的位置信息,从你希望获取的信息中可以推断出你现在正在做的事情。你获取一条酒店的信息那就意味着你现在需要寻找一家酒店,也许是你累了,也许你只是需要一家酒店。
例如之前国内某些快捷酒店的用户数据库泄漏,你可以直接在网上找你的消费记录,海量的用户数据信息可以帮助企业分析消费者的消费习惯,也可以帮助企业打垮自己的企业形象。个人身份信息的泄漏让人们开始关注大数据本身的数据安全,你的个人数据很可能就成为别人手中的利益。
为了防止这种情况,负责保护私人数据组织传统上使用去识别方法,包括匿名,加密,密钥编码和数据分片,从真正的身份拉开距离的个人身份信息。
虽然匿名去除姓名,地址和社会安全号码保护隐私,替换此信息昵称,假名和人工识别。钥匙编码编码个人身份信息和建立密钥进行解码,从而。数据分片脱落在一个水平分区中的数据的一部分,提供了足够的数据一起工作,但还不足以重新标识的个人。
身份重构
但是,计算机科学家已经证明他们可以使用的数据,是不是PII,重整相关的人的身份。“有很多方法,一旦你甚至一种类型的数据一起工作的拼凑数据一起回来,”基思·卡特,兼职教授,新加坡国立大学商学院说。如果一个品牌或政府收购涵盖一年的GPS记录列表,它可以用它来学习了很多关于一个人或数人,包括他们的身份。
“你将能够轻松地发现他们是通过识别他们经常来自于早上七八地址谁,你将能够看到学校或办公室,他们然后才显示出来,你将能够学习在那里他们又回到了晚上,大数据世界亚洲2013“发布会”话音刚落,一个扬声器在说“。
从这一点,有人可能会得到他们的名字和地址与准确使用公共地址查询工具的高度。有姓,他们可以决定哪些家庭成员是由他们结束了,一旦他们离开家的早晨,无论是在小学或中学,或在某一个地方工作。
有关数据专家指出,从数据块重新标识人的能力对隐私政策的负面影响,并削弱了信心匿名。此外,文章认为,是商业模式,特别是在医疗保健,在线行为广告,和云计算的重要组成部分。一个含义是,如果企业盘踞在作为隐私的解决方案,这可能使他们很难找到和资助一个替代的解决方案。所以,这导致重新识别滥用可能还会持续很长一段时间。
但是,这种假定政府和企业有信心在匿名摆在首位,根据卡特,谁拥有了与角色与埃森哲,高盛和雅诗兰黛的角色。这里也有一个假设,即企业和政府花了很多钱的东西,不提供商业价值,卡特笔记。事实上,政府和企业所做的是通过使用 /匿名给自己安全的港湾。而且,即使企业不使用,法律后果是在手腕上一巴掌,卡特证实。
事实是,有可能永远是对大数据隐私问题,价格适中或其他适当的解决方案。有可能仅是保护企业和其他实体责任,同时安抚人的数据是有风险的解决方案。不幸的是,对于个人来说,这意味着,滥用确实会继续,而不管该溶液在手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27