京公网安备 11010802034615号
经营许可证编号:京B2-20210330
手游运营,怎么做一份数据日报?
很多人反映刚刚接手数据分析工作,不知道怎么来做一份数据日报,不知道取哪些数据,关注哪些重点指标,事实上对于新手而言最好的办法就是去参考前辈和看看行业一些日报的形式,但是核心在于你的产品是页游,还是app,还是手游,还是网站,还是开放平台,还是端游,或者是一款互联网应用,产品定位和属性决定了数据分析日报的形式和内容。
今天要说的这些指标和内容,基本可以保证基本的日报数据需求,换句话这是要关注的一些方面,剩下的要根据你的产品来了,不全或者纰漏错误还请各位批评指正。
在开始之前还要明确一点,仔细想清楚你的报告服务于谁,给谁看,怎么做怎么展现,都需要你自己来衡量,下面的一切都是一个基本的思路和例子,曾经看过一个面试题,在这里与各位分享一下,看看大家的答案是什么。如果你是京东商城的DMA,现在要你给刘强东提供三个数据分析指标,你会选择哪几个?
基础运营数据部分首先要把重点摘要写出来,所谓摘要就是重点的数据指标的情况写出来,实际上大家要明白这些数据都是起到了解和预警的作用,其涉及的指标有:
1)人气数据
DAU(每日活跃帐号数:每日登录过游戏的玩家)
新增用户(每日注册的玩家)
新增有效用户(每日注册的玩家并保证登录过游戏的玩家):建立时间序列的数据源,分宣传期与非宣传期数据,可结合ACU,PCU等数据,观察游戏对用户的黏着度
PCU(峰值):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
ACU(平均同时在线人数):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
平均在线时长
平均游戏时长
客户端下载量
官网&论坛PV,独立IP,UV,论坛的浏览次数,发帖量
2)收益数据
每日充值金额
每日充值人数(日充值APA):建立时间序列的数据源,对比业内平均水准,测试游戏消费引导能力
每日ARPU(可以理解平均充值金额):建立时间序列的数据源,测试游戏消费点挖掘能力
每日新增充值帐号:
每日购买金额
每日购买人数(日购买APA)
每日ARPU(可以理解平均消费金额)
3)流失率信息
流失率作为单独的一块要重点的进行描述,流失率的变动意味着产品在发生变化,主要要从以下几个流失率指标进行每日预警监控:
日流失帐号:统计日内有登录但统计日后7天都未登录的账号数
日流失率:统计日内有登录但统计日后7天都未登录的账号数 / 统计日的活跃帐号数
日流失充值帐号数:统计日前30天有充值行为,但统计日内无登录,且无充值行为
重点事件及活动回顾
重点活动及事件的介绍,便于在报告的阅读者容易找到前一天数据出现问题的原因,定位问题,找到相关负责人进行解决。
服务器状态信息:是否停服,玩家出现登录困难等信息
BUG:重大BUG反馈信息(影响游戏体验)
是否有新一轮活动开启
是否有版本更新
是否存在竞品测试或者上线
活动执行情况汇总
把最近一个时期开启的相关活动进度,比如开始时间,结束时间,活动链接地址进行简要汇总,便于阅读数据的一些人员能够针对数据评估活动效果。
详细数据信息
第二部分是针对第一部分而言的,对于一些公司的高层而言,没有太多的时间,只能简单的看看第一部分的数据汇总信息情况,而第二部分,实际上是给各个部门和人员来看,从更加的细致数据对比上发现问题,比如环比,同比数据怎么样,包括绘制相关的曲线图,饼图等帮助这些人员进行理解。
基础数据分解信息
1)人气数据
CCU实时在线状态图
一般而言,CCU只会列出当日,前一日和同期的对比曲线,大家灵活机动,可以直接从公司的BI系统或者经分系统得到这条曲线。
DAU:绘制DAU曲线,并包括具体数值汇总(可以列出表格),同时要把当日数据进行环比和同比分析。
详细数据表格(蓝色为上周同期,红色为日报当日数据)
详细数据表格(蓝色为上周同期,红色为日报当日数据)
接下来一般的处理ACU,平均在线时长信息,利用表格和曲线图直观形象的表现一下。
辅助的也会出现一个表格,具体列出来这些数据和信息,供查阅
此外有必要加入PCU/ACU的变化趋势图,这个图利于观察近期活动的一些情况。
在基础数据的人气数据部分可以将剩下的数据指标按照之前的表格形式展现出来,至于曲线,要根据需要灵活添加。
新增玩家数据
官网论坛数据
官网专题页
论坛访问
客户端下载信息
2)收益数据
充值数据
这里只给出了表格,实际上我们好要给出曲线图,充值金额,充值人数,充值ARPU
消费数据
同理消费数据也要给出曲线图,通过曲线图或者柱形图形象化展现。
道具销售排行信息
流失率相关信息
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23