
手游运营,怎么做一份数据日报?
很多人反映刚刚接手数据分析工作,不知道怎么来做一份数据日报,不知道取哪些数据,关注哪些重点指标,事实上对于新手而言最好的办法就是去参考前辈和看看行业一些日报的形式,但是核心在于你的产品是页游,还是app,还是手游,还是网站,还是开放平台,还是端游,或者是一款互联网应用,产品定位和属性决定了数据分析日报的形式和内容。
今天要说的这些指标和内容,基本可以保证基本的日报数据需求,换句话这是要关注的一些方面,剩下的要根据你的产品来了,不全或者纰漏错误还请各位批评指正。
在开始之前还要明确一点,仔细想清楚你的报告服务于谁,给谁看,怎么做怎么展现,都需要你自己来衡量,下面的一切都是一个基本的思路和例子,曾经看过一个面试题,在这里与各位分享一下,看看大家的答案是什么。如果你是京东商城的DMA,现在要你给刘强东提供三个数据分析指标,你会选择哪几个?
基础运营数据部分首先要把重点摘要写出来,所谓摘要就是重点的数据指标的情况写出来,实际上大家要明白这些数据都是起到了解和预警的作用,其涉及的指标有:
1)人气数据
DAU(每日活跃帐号数:每日登录过游戏的玩家)
新增用户(每日注册的玩家)
新增有效用户(每日注册的玩家并保证登录过游戏的玩家):建立时间序列的数据源,分宣传期与非宣传期数据,可结合ACU,PCU等数据,观察游戏对用户的黏着度
PCU(峰值):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
ACU(平均同时在线人数):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
平均在线时长
平均游戏时长
客户端下载量
官网&论坛PV,独立IP,UV,论坛的浏览次数,发帖量
2)收益数据
每日充值金额
每日充值人数(日充值APA):建立时间序列的数据源,对比业内平均水准,测试游戏消费引导能力
每日ARPU(可以理解平均充值金额):建立时间序列的数据源,测试游戏消费点挖掘能力
每日新增充值帐号:
每日购买金额
每日购买人数(日购买APA)
每日ARPU(可以理解平均消费金额)
3)流失率信息
流失率作为单独的一块要重点的进行描述,流失率的变动意味着产品在发生变化,主要要从以下几个流失率指标进行每日预警监控:
日流失帐号:统计日内有登录但统计日后7天都未登录的账号数
日流失率:统计日内有登录但统计日后7天都未登录的账号数 / 统计日的活跃帐号数
日流失充值帐号数:统计日前30天有充值行为,但统计日内无登录,且无充值行为
重点事件及活动回顾
重点活动及事件的介绍,便于在报告的阅读者容易找到前一天数据出现问题的原因,定位问题,找到相关负责人进行解决。
服务器状态信息:是否停服,玩家出现登录困难等信息
BUG:重大BUG反馈信息(影响游戏体验)
是否有新一轮活动开启
是否有版本更新
是否存在竞品测试或者上线
活动执行情况汇总
把最近一个时期开启的相关活动进度,比如开始时间,结束时间,活动链接地址进行简要汇总,便于阅读数据的一些人员能够针对数据评估活动效果。
详细数据信息
第二部分是针对第一部分而言的,对于一些公司的高层而言,没有太多的时间,只能简单的看看第一部分的数据汇总信息情况,而第二部分,实际上是给各个部门和人员来看,从更加的细致数据对比上发现问题,比如环比,同比数据怎么样,包括绘制相关的曲线图,饼图等帮助这些人员进行理解。
基础数据分解信息
1)人气数据
CCU实时在线状态图
一般而言,CCU只会列出当日,前一日和同期的对比曲线,大家灵活机动,可以直接从公司的BI系统或者经分系统得到这条曲线。
DAU:绘制DAU曲线,并包括具体数值汇总(可以列出表格),同时要把当日数据进行环比和同比分析。
详细数据表格(蓝色为上周同期,红色为日报当日数据)
详细数据表格(蓝色为上周同期,红色为日报当日数据)
接下来一般的处理ACU,平均在线时长信息,利用表格和曲线图直观形象的表现一下。
辅助的也会出现一个表格,具体列出来这些数据和信息,供查阅
此外有必要加入PCU/ACU的变化趋势图,这个图利于观察近期活动的一些情况。
在基础数据的人气数据部分可以将剩下的数据指标按照之前的表格形式展现出来,至于曲线,要根据需要灵活添加。
新增玩家数据
官网论坛数据
官网专题页
论坛访问
客户端下载信息
2)收益数据
充值数据
这里只给出了表格,实际上我们好要给出曲线图,充值金额,充值人数,充值ARPU
消费数据
同理消费数据也要给出曲线图,通过曲线图或者柱形图形象化展现。
道具销售排行信息
流失率相关信息
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01