京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由经管之家(原人大经济论坛)主办的“2015中国数据分析师行业峰会(CDA·Summit)”将于2015年9月11日在北京世纪金源大酒店隆重举行。
本次峰会邀请到了精通数据科学发展前瞻的数据科学家参加,在峰会前期,我们通过峰会系列报道为大家“剧透”各位数据科学家的精彩发言。今天为大家介绍的第二位嘉宾是百度首席数据科学家吴恩达,他对人工智能的理解是“人比机器更需要人工智能”
如果你关注风投和研究基金的动向,就会发现未来人工智能将会扮演非常重要的角色。作为百度的首席科学家,吴恩达(Andrew Ng)是该领域首屈一指的创新者之一,他在斯坦福大学教授人工智能课程,主导了Google Brain项目,并创建了线上教育公司Coursera。去年,他加盟百度,吴恩达希望“教会”计算机如何去看、去听、去工作。
可能会有人觉得,为何人工智能应用在中国有如此巨大的机遇。在中国这个庞大的市场,有流量排名第五的百度网站,有购物网站淘宝,即时通讯应用QQ,媒体公司新浪及微博平台新浪微博。据吴恩达透露,百度如果设计一款应用程序,他们首先考虑的就是移动,现如今手机已经成为了中国消费者的主要渠道。
吴恩达谈到自己所做的研究工作时,充满了激情。如今,他在加州森尼韦尔市百度美国分部管理一支不断壮大的队伍。最近,他在Skype上接受了国外媒体Wired的访谈,描述了自己对机器智能的看法。
许多公司,包括百度和其他公司,都有出色的计算机视觉技术,可以完成很多看似不可能完成的工作。我认为比较具有挑战性的是,如何开发出最吸引人的产品。截至目前,我不认为有人做出什么杀手级应用。
在硅谷,有很多初创公司在农业和购物(特别是许多服装类购物)领域里使用计算机视觉技术。拿百度来说,如果你寻找一张电影明星的照片,我们实际上会使用面部识别技术去识别这位电影明星,之后再告诉用户他的年龄和爱好等信息。如果这位明星身上穿了件好看的衣服,我们也会帮助用户寻找类似风格的服装,并展示出来,这些都非常受用户欢迎的。
得益于此类技术,广告商会不会在这些照片上竞标营销自己的品牌呢?百度现在还没这么做,我们只是为用户寻找一些相关的服装。但是这项技术完全可以应用在很多垂直领域里,比如识别人们的爱好和度假目的地,然后给他们推荐一些类似旅游目的地的照片。计算机视觉技术有很大潜力,但现在我们还没有完全掌握该技术。我们应该担心毁灭性的人工智能吗?最令人信服的原因是什么?我想,从现在开始后的几百年时间,如果人类发明了一项我们从未听说过的科技,或许计算机会变成恶魔。但未来是不确定的,说实话五年后会发生什么我都不知道。我之前说自己不担心人工智能成为恶魔的原因,其实就像我不担心火星上会人口过剩一样。百年之后,我希望人类能在火星上建立殖民地。但是,现在我们连脚都没有踏上过那个星球,又何必胡思乱想呢?人工智能方面的工作是什么样子呢?我觉得人工智能就像是去构建一艘火箭船。你需要一个巨大的引擎和许多燃料。如果你有了一个大引擎,但燃料不够,那么肯定不能把火箭送上轨道;如果你有一个小引擎,但燃料充足,那么说不定根本就无法成功起飞。所以,构建火箭船,你必须要一个巨大的引擎和许多燃料。
深度学习(创建人工智能的关键流程之一)也是同样的道理,火箭引擎就是深度学习模型,而燃料就是海量数据,这样我们的算法才能应用上。
你在Google工作过,对他们的自动驾驶汽车有什么看法?我在Google工作时,办公室和自动驾驶汽车开发团队距离很近,而且和他们团队中很多人都是好朋友,对于他们在做的工作,我觉得很棒。但是说实话,我无法直接给他们提供帮助。
绝大多数人会觉得自动驾驶汽车离自己还比较遥远,同时对于如何便捷实用自动驾驶汽车也存在一定的混淆。实际上,自动驾驶汽车并不是说要让一辆汽车自动行驶一千英里,或是想开到哪儿就开到哪儿。它的真谛和机器学习有些类似,机器学习技术希望能够提升准确率,比如达到90%到99%的准确率,尽管达到99.99%非常困难。自动驾驶汽车也是如此,它的目的在于推动更安全的驾驶,一辆自动驾驶汽车肯定比一辆被醉汉驾驶的汽车安全的多。
你创建了Coursera,并极力推动线上教育项目,那你如何看待教育的未来?在教育下一代如何用不同方法解决问题上,我们的教育系统其实已经做得非常成功了,比如当拖拉机取代传统农耕劳动力,我们就会教授下一代去工厂工作。但是我们还做不到同时教授大批量的人去完成创造性工作。
你认为未来自动化会取代人工吗?自动化会降低产品成本,说不定工人每周工作10到20个小时就可以了。
我觉得工作时间应该减少到0!我觉得最低生活保障可以作为一种长期解决方案,但其实,我也不确定这是否是最能让我自己接受的解决方案。我觉得有了社会福利,那么所有人类都会有足够的精力去做一些创造性的事情。当人类有了进行创造性工作的技能,世界将会变得非常非常棒!
2015中国数据分析师行业峰会即将开幕,欢迎数据分析行业每一位数据人参加报名!
报名咨询电话:010-53675708/53675718
更多关于峰会详细信息,请点击“阅读原文”或扫描二维码,还可在线报名呦!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15