京公网安备 11010802034615号
经营许可证编号:京B2-20210330
移动应用数据的六个分析难点
哪怕已经已经通读互联网数据分析的理论,但在实际运用到移动应用中时还是遇到有不少的难题。
而通过针对数据分析在移动应用领域的使用,文章列举了六个在移动应用中的数据分析难点以供大家参考。通过对这些难点的归纳整理,籍以帮助大家找到解决问题之道。
1.很难获得用户操作行为完整日志。
现阶段数据分析以统计为主,如用户量、使用时间点时长和使用频率等。一是需要识别用户,二是记录行为容易引起程序运行速度,三是开发成本较高。
2.产品缺乏核心指标。
这需要分析人员足够的了解产品,产品有了核心指标,拆分用户操作任务和目的,分析才会有目的,否则拿到一堆数据不知如何下手。比如讲输入法的核心指标设为每分钟输入频率,顺着这个目标可以分析出哪些因素正向影响(如按键容易点击)和反向影响(如模糊音、误点击和点击退格键的次数)核心指标。
3.短期内可能难以发挥作用。
数据分析需要不断的试错,很难在短期内证明方法的有效性,可能难以获得其他角色的支持。
4.将分析转化为有指导意义的结论或者设计。
看过某应用的近四十个设置项的使用比例,修改皮肤使用率较高,而个别选项使用率不到0.1%,依次数据可以调整设置项的层级关系,重要的选项放置到一级强调显示,低于5%的可以放置二三级。功能使用率的分析是比较容易的切入点。
5.明确用户操作目的。
功能对于用户而言,使用率不是越高越好。增加达到的目标的途径,用户思考成本增加,操作次数会增加,比如搜索。在应用中使用搜索可能说明用户没有通过浏览找到想要的内容,如果用户搜索热门内容,说明应用展示信息的方式出现问题。
6.考虑到运营需求。
之前做过的工具型应用,设计的核心指标是提高操作效率,减少点击次数、等待时间和手指位移等,最快的时间完成操作。而一些浏览型产品用户的目的并不明确,大致有浏览、查询、对比和确定目标等四类用户行为,需要兼容用户目标不明确情况下操作,引导用户选择的同时还要在过程中展现更多的内容,刺激用户点击。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26