
移动应用数据的六个分析难点
哪怕已经已经通读互联网数据分析的理论,但在实际运用到移动应用中时还是遇到有不少的难题。
而通过针对数据分析在移动应用领域的使用,文章列举了六个在移动应用中的数据分析难点以供大家参考。通过对这些难点的归纳整理,籍以帮助大家找到解决问题之道。
1.很难获得用户操作行为完整日志。
现阶段数据分析以统计为主,如用户量、使用时间点时长和使用频率等。一是需要识别用户,二是记录行为容易引起程序运行速度,三是开发成本较高。
2.产品缺乏核心指标。
这需要分析人员足够的了解产品,产品有了核心指标,拆分用户操作任务和目的,分析才会有目的,否则拿到一堆数据不知如何下手。比如讲输入法的核心指标设为每分钟输入频率,顺着这个目标可以分析出哪些因素正向影响(如按键容易点击)和反向影响(如模糊音、误点击和点击退格键的次数)核心指标。
3.短期内可能难以发挥作用。
数据分析需要不断的试错,很难在短期内证明方法的有效性,可能难以获得其他角色的支持。
4.将分析转化为有指导意义的结论或者设计。
看过某应用的近四十个设置项的使用比例,修改皮肤使用率较高,而个别选项使用率不到0.1%,依次数据可以调整设置项的层级关系,重要的选项放置到一级强调显示,低于5%的可以放置二三级。功能使用率的分析是比较容易的切入点。
5.明确用户操作目的。
功能对于用户而言,使用率不是越高越好。增加达到的目标的途径,用户思考成本增加,操作次数会增加,比如搜索。在应用中使用搜索可能说明用户没有通过浏览找到想要的内容,如果用户搜索热门内容,说明应用展示信息的方式出现问题。
6.考虑到运营需求。
之前做过的工具型应用,设计的核心指标是提高操作效率,减少点击次数、等待时间和手指位移等,最快的时间完成操作。而一些浏览型产品用户的目的并不明确,大致有浏览、查询、对比和确定目标等四类用户行为,需要兼容用户目标不明确情况下操作,引导用户选择的同时还要在过程中展现更多的内容,刺激用户点击。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30