
大数据时代喜忧参半,数据发展正面临转折点
近年来,大数据已经覆盖了许多领域,包括互联网领域。许多应用和平台热衷于搜集用户的信息。而在近日举行的SXSW(South by Southwest,西南偏南)大会上,专家们却表达了对于数据会歧视用户的担忧。
会上,独立隐私安全专家Ashkan Soldani提及了IBM的一款能够计算“恐怖主义得分”的软件。这款软件的目的是通过用户数据,计算从叙利亚来到欧洲的人们参与恐怖活动的概率。
大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。但是,在大数据发挥重要作用的同时,也产生了一系列问题,给人们造成了困扰。
一、许多软件因数据歧视用户,造成诸多问题
目前,许多企业都会通过软件或应用搜集用户信息。在大数据时代,这种做法是无可厚非甚至是必要的,但是,用户数据可能会使用户遭到歧视,甚至造成滥用。
比如,电脑投放求职广告时,就会产生歧视行为。去年,卡耐基梅隆大学的研究人员通过一款名叫AdFisher的工具,对其第三方网站上的广告定向投放过程进行了追踪。结果表明,当谷歌判定求职者为男性时,为其推送高新主管职位消息的概率远大于同等条件的女性求职者。
记者Julia Angwin说:“你可能并不知道你为什么没有得到那份工作,你或许永远不会知道,其实是因为数据歧视了你”。
对此,AdFisher的开发者表示:“我认为,我们的发现揭露了目前广告生态中开始浮现的诸多歧视和不透明现象。从社会的角度来看,它很值得担忧”。
不仅是在工作方面,就连社交软件都会因为数据歧视用户。美国约会应用Tinder的付费版Tinder Plus推出后,其定价的差异化引发了争议。在美国的用户,18岁到29岁只需9.99美元,但是超过30岁的用户则需支付19.99美元。而处在英国地区的用户,18岁至27岁只需支付3.99英镑,而超过28岁就必须支付14.99英镑。
由于这样的定价,关于Tinder歧视“大龄未婚青年”的言论一时蔓延开来。对此,Tinder副总裁的解释是,年轻用户是高频使用者,但缺乏金钱,定价较低是为了刺激其购买欲。而大龄用户对价格或许敏感度更低,所以愿意购买服务。因此,定价差异化是基于公司测算,并非年龄歧视。
不管这些应用是出于怎样的目的,都或多或少地带有歧视色彩,并且大数据有泄露用户隐私之嫌。一份研究大数据影响的白宫报告中写道:“我们长期坚持的公民权利保护政策对居民信息如何在住房、信用卡、雇佣、健康、教育和交易市场等方面使用有严格的限制,而数据分析技术有可能会击溃这一防线”。
研究者指出,对于企业追踪用户的过程以及投放广告的算法有一定的了解,对人权组织及监管机构来说,是相当重要的。当然,企业也应该采取一些相关的措施,消除数据对用户带来的歧视。
大数据是在互联网时代不可避免的发展趋势,但同时,它产生的问题也让人们有些恐慌。
二、大数据发展正面临转折点,需努力趋利避害
大数据的意义就在于,从庞杂的数据背后挖掘并分析用户的行为习惯与喜好,从而找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身。
这种作用对于当今企业来说,是极其重要的,其商业价值大致体现在四个方面。
大数据可以实现客户群体细分,并为每个群体量身定制特别的服务;大数据可以对现实环境进行模拟,发掘出新的需求并使投资回报率有所提升;大数据可以加强部门之间的联系,提高生产链条与管理链条的效率;大数据可以使服务成本降低,找出隐藏线索,对产品和服务进行创新。
对于社会来说,大数据的发展也是有诸多好处的。大数据定理表明,在试验不变的条件下,重复试验过程多次。在大量重复中,会呈现出几乎必然的统计特性。
随着计算机处理能力的增强,获得的数据量越大,挖掘出的价值就越多。如果银行能够及时发现风险,社会经济将越发强大;如果医院能够及时发现疾病,我们的身体会更加健康;如果通信公司能够降低成本,我们的话费将更加实惠……
以上情况,都可以通过大数据的不断积累和不断分析实现。通过这一过程,我们可以发现规律,从而实现更好的未来。
但是,任何事物都有两面性,大数据时代所产生的问题也同样不少。
第一,数据不够安全。无论是企业还是个人,在实践过程中都会或多或少地产生数据。这些数据在当今时代并不安全,会有很多方法使它们泄露。
第二,数据泄露产生不平等。对于用户来讲,数据是一笔财富,但是遭到了别人的窃取,而自己并未得到任何收益,这对于用户来说是不公平的。
第三,用户隐私问题。当用户在网上注册信息后,这些信息很有可能已经被扩散,当用户收到一些莫名其妙的邮件、电话、短信时,其实用户的各种信息早已被非法的商业机构贱卖了。
无意中拍的照片,可能会使人一夜成名。用户的想法、行为、都可能被商家记录在案。人们担心身份被盗用,担心数据造假,害怕数据框定,反感数据的不公平造成的歧视。
要解决这些问题,需要克服许多困难,面临巨大的挑战。虽然企业可以更加细致地去检验他们的系统和流程,但是依然不能完全解决问题。通常数据驱动的决策都比较隐蔽,即使产生威胁,也不会被轻易发现。
任何的领域都需要统一,但是大数据行业尚不能立法,因为大数据趋势变化多端,无法掌握立法所面临的全部背景。
业内专家认为,有必要在计算机课程中增加数据伦理教育,并且更改有歧视倾向的计算机程序。尽管不能完全解决问题,但也能起到一定的作用。
马云说:“很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了”。不管是喜是忧,大数据时代已经降临。
哈佛大学社会学教授加里•金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程”。现在的大数据领域正面临一个转折点,努力的方向决定着其属性的发展。我们应该尽量消减其负面影响,让大数据发挥其正面作用,从而更好地为人类服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29