京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为创新驱动发展装上大数据引擎
在新时期,大数据是国家基础性战略资源,已成为社会生产的新要素,是“新的石油”“新的资产”“新的空间”,正在深刻变革我们的科技、产业和管理。顺应大数据潮流,就能为创新这个第一动力装上新引擎,为引领经济新常态提供强支撑,推动实现有质量、有效益、可持续的发展
党的十八届五中全会提出创新、协调、绿色、开放、共享的新发展理念,明确指出要实施国家大数据战略,标志着大数据发展已成为国家战略层面的核心任务。“十三五”时期将深入实施创新驱动发展战略,促进大数据、云计算、物联网广泛应用。
世界已开启大数据时代序章
自上世纪四十年代发明电子计算机以来,计算方式实现了大突破。信息网络的普及,更是使人与人的沟通方式跨越时空,地球很大程度上成了一个小小村落。同时,信息技术的广泛应用又深刻改变了生产和生活方式,让我们充分享受着互联网时代的种种便利和精彩。随着新一代信息技术的迅猛发展以及信息化的全面覆盖和不断深化,数据越来越渗透到各个行业和各个流程中,正以前所未有的规模和速度积聚,在移动通讯、社交网络、电子商务、政府管理等方面产生了纷繁复杂的海量数据资源,近几年更是达到了ZB数量级,全球人均拥有100G以上。据统计,进入21世纪以来人类所产生的数据量已经远远超过了具有文字信息记载历史以来直至20世纪末的总和,世界已然开启大数据时代的序章。
大数据迅速引起了各国政府的高度关注。2012年3月,美国政府斥资2亿美元启动“大数据研究和发展计划”,希望通过增强政府收集、分析、挖掘、使用海量数据的能力,带来新一波生产率增长和消费者盈余。欧盟及其成员国也制定了大数据发展战略,以数据价值促进传统产业的转型,提高公共部门效率,应对社会面临的各种挑战。这些说明,一个国家拥有数据的规模和运用数据的能力将成为综合国力和国际竞争力的重要标志。
大数据成为社会生产新要素
改革开放以来,我国经济发展取得了巨大成就,一跃成为世界第二大经济体,社会生产力和综合国力迈上了新台阶。近几年,我国经济呈现出新常态,劳动力、土地、资本等要素条件发生了很大变化,增长速度从高速转为中高速,迫切需要深入实施创新驱动发展战略,提升产业能级、优化经济结构、打通供需通道,加快从经济大国走向经济强国。
在新时期,大数据是国家基础性战略资源,已成为社会生产的新要素,是“新的石油”“新的资产”“新的空间”,正在深刻变革我们的科技、产业和管理。顺应大数据潮流,就能为创新这个第一动力装上新引擎,为引领经济新常态提供强支撑,推动实现有质量、有效益、可持续的发展。
大数据是继互联网之后的又一项新技术,为计算科学注入了新的内涵和活力,将孕育数据密集型学科,使数千年前的实验科学、数百年前的理论科学、数十年前的计算科学之间联系更加紧密、联动更加深入,为未来知识发现和技术创新开辟了新路径。在产业方面,大数据在物理世界和虚拟世界融合过程中发挥着关键作用,促使新硬件、云计算、移动互联、物联网等技术高效协同,实现企业内外部各种资源互动联用并提供多元价值服务,催生出大量融合性新业务、创新性商业模式、混业经营新业态,形成以数据分享为基础、数据洞察为驱动的新价值网络,促进传统产业转型升级,加速新兴产业培育壮大。大数据也正成为巨大的经济资产,为我们带来全新的投资机会、创业方向。在社会发展领域,大数据为我们提供了全新的洞察世界的方法和视角,全方位改变我们的生活、工作、思维,解构和重构现有的社会秩序,从而对社会治理的科学化与精细化产生重大影响。
应善用新引擎激发新动力
“十三五”期间,我国应紧紧围绕“资源、技术、应用、产业、安全”联动这条主线,坚持以服务治理能力提升、民生改善、经济转型、创新创业为导向,以数据资源共享开放促进大数据技术、应用、产业发展,加快建设数据强国。
我国拥有庞大的政务数据资源,应打破部门壁垒,破解条块分割,通过建设上下贯通、横向协同的共享交换平台,率先实现国家人口、法人、自然资源、空间地理等基础数据资源以及金税、金关、金财等信息应用系统之间的顺畅对接和普遍共享。同时,以市场和社会需求为导向,积极稳妥推动公共数据资源开放,探索建立政府和市场互动机制,形成多维度的公共数据资源开放格局。对于市场数据资产,通过明晰产权、保障安全、保护知识产权,实现有序的交易流通,鼓励社会各方进行深度开发和增值利用。
世界第一的网民数量、市场规模、应用前景,必然会在大数据领域产生一批核心技术、创新应用、领军企业。要对芯片、存储、硬件装备、内存计算、数据分析挖掘等方面开展关键技术、核心产品、重点平台的研发突破,充分利用数据的复制低成本、加工高增值特性,实施一批全行业应用解决方案,推动政务、民生、产业等领域的数据应用和业务创新。应构筑优良的产业生态环境,汇聚全球创新资源要素,形成面向国际的数据服务能力。
互联网时代,中国跟上了世界步伐,特别是在电商、社交、搜索等领域亮点纷呈,令人瞩目。大数据时代,中国应该更有信心善用新引擎、激发新动力,领航走向未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08