京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎样培养运营者的数据分析能力!
面对一大堆看似杂乱的数据,如何进行信息提取与数据加工,从中获取自己想要的信息,并应用这些信息,有理有据的进行需求的讨论、最终决策的推进,这是每一个运营人员必修的课程。那么如何培养运营人员的数据分析能力呢?
首先,要有数据收集分析的意识,掌握数据产生的来源;其次,拿到数据后,在数据间找关联性,深挖内在含义;再次,掌握基本的数据分析方法,并在实战中加以应用;最后,将分析的结果应用到后续工作中,检验分析结果。如此,循环往复,形成一种职业习惯,一个工作的流程。现在笔者总结出以下几点数据分析时要注意的原则,在这里和大家分享下:
1、明确数据分析的目的
要分析一份数据,首先得先明确自己的目的:为什么要收集并分析这样一份数据?只有你的目的明确了之后,才能对接下来你要收集哪些数据、如何收集有一个整体的把握。当然你的目的可以是多个小点,(如:用户在首页浏览了哪些内容?登录框在页面上的重要程度?)只要这些点是一个个切实待解决的问题点,将其罗列下来,一个一个的去收集数据。你分析的结果可能会改变整个项目,但有了数据的支撑,会让项目或需求有一个全新的开始或细节的调整。
2、了解数据来源并收集
按照分析的目标中罗列的点,建立一个分析框架,并按照轻重缓急进行数据收集。与此同时,需要对数据是如何产生的,如何获取这些数据进行相应的了解。在工作中应用到的数据统计工具有:金牌令箭、显微镜、CNZZ统计等,通过这些统计工具可以方便的进行数据的收集,同时交互设计师也要与前端保持沟通,了解数据统计的方法,适时添加统计的维度,请前端同学帮忙埋统计代码。
3、掌握数据分析的方法
作为交互设计师,要掌握几种基本的数据分析方法:对比分析法、分组分析法、结构分析法、平均分析法、交叉分析法……基于这些分析方法,我们可以对现状、原因、未来有初步的了解,并进入后续更深入的分析。如:现状分析适用于对现今站点或页面的浏览点击情况做一个数据统计与热点分析,可以得出用户的浏览路径及关注重点。原因分析则侧重于一个问题,深入挖掘答案。未来分析可用于与产品经理沟通时,对后期产品的规划进行数据交流。
4、沟通分析结果
在沟通分析结果前,要注意不要只用手上仅有的资讯作判断,如果手上的证据不足以完全反应实际状况的时候,以数据分析结果作为决策就很容易出错,尤其是单看某一个数据维度时。交互设计师要超前思考,考虑产品经理可能从中提出的问题,并给出回应。让沟通高效且有意义。
5、数据不是万能的
前期数据可以用来挖掘用户需求,中期数据可以用来过滤产品功能,后期数据可以用来反映产品成败。整个过程当中,数据还能举证,作为产品经理与交互设计师之间的沟通内容。但是,我们要认清一个事实:数据不是万能的。它不能反映一切问题:在前期的分析中不一定能找到创新的突破口或者潜在的需求点;在后期的效果验证中,往往又会显得很有说服力。我们要怀着客观的心态来关注数据,从不同的角度出发,与产品经理之间保持有效的沟通。
除了以上几点原则,在数据分析过程中,我们也要避免以下几种的情况:
1、项目紧急,时间不够
在数据分析前期,先对要完成的事情做个计划表,内容包括以下几个方面:收集数据、整理数据、分析数据、总结报告。预估每个内容需要花费的时间,并将重点环节标注出来,合理安排时间。
2、注重收集,分析不够
数据分析的重点应该落在分析上,而不是数据的大量收集。在保证足够的数据信息后应立即投入整理和分析阶段。如若花了大量的时间去收集,在deadline前基本没有时间进行分析,那最后提交的只会是一份粗浅的总结,而经过深入分析的数据报告才是真正有价值的。
3、关注数据的时效性
数据可以告诉我们过去确实发生过的事情(如:用户的喜好、广告的效果等),但是随着时间的推移,数据也会相应的发生变化。数据是有时效性的,太久以前的数据可能已经无法反映当下的情况,也就不能用来做设计决策。数据越实时,就越能利用这种数据来对当下的问题做最及时的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01