
大数据在犯罪预防中有独特价值
互联网技术突飞猛进的发展不断突破人类现有认识范围,悄无声息地改变着二进制世界的固有局限,预示着大数据时代的到来。从目前看,大数据不仅改变着人们的生活方式,还为人们提供了认识世界的最新工具,人们可以通过对海量数据的采集、分析,预测未来社会发展的趋势。正因为大数据具有这些功能,引起了美国、日本等发达国家的关注,它们通过对某一区域相关犯罪数据的收集、分析,有效降低该区域犯罪率。世界各国也争相研究大数据在预防犯罪中的价值。
在犯罪预防中作用显著
我国传统犯罪预防对策主要呈现出三个较为典型的特征:一是主要以事后预防为主,常常忽视事前对犯罪相关因素的调查或跟踪,预防效果并不明显。二是主要以发生的案件类型作为预防对象,对于新出现的犯罪类型不能有效形成预防体系,犯罪预防体系的基本功能难以发挥出来。三是犯罪预防对策的出台与犯罪预防存在时间上的断层,缺乏及时性。而运用大数据预防犯罪的价值则较为显著,主要体现在以下几个方面:
在预防方式上,大数据预防犯罪将消极的事后预防转变为积极的事前预防。即通过对某一区域犯罪数据的分析,可以确定该区域犯罪的关联因子,不必等到具体犯罪发生后才采取相应对策。例如,通过对某区域高频率词语收集、分析,可以预测在该区域即将发生的犯罪行为,从而提前在该区域部署防范应对措施,如增加巡逻警力、加大宣传力度、建立警民合作机制等,将即将发生的犯罪扼杀在摇篮中。
在样本选择上,庞大的数据库为预防对策的选择提供了较为充足的样本,可以有效应对即将出现的犯罪类型。从数据形成来看,大数据库是由无数网络个体的现实操作直接反馈到数据库中,犯罪预防对策形成于较为充足的样本分析之上。样本越充足,获取的信息越全面,得出的概率性越高,预防犯罪的基本面就越宽泛,也就越能有效预防即将出现的犯罪类型。
在措施制定上,通过对大数据的收集、分析,可以使预防对策的制定更加快捷、科学。这主要体现在两个方面:其一,大数据的迅捷性使犯罪预防对策的出台更为快捷。在大数据时代,借助网络传播的快捷性,人们对于信息的把握不再囿于地域、时间的限制,分分秒秒便可知信息的来源及其扩散途径,为及时制定预防对策提供了充足的时间。其二,大数据的精准性使犯罪预防对策的形成更为科学。因为借助于超大功能的云计算优势,可以将人们碎片化的搜索记忆还原为较为精确的关联因子,基于对这种关联因子客观分析,可以使犯罪预防对策的制定更为科学。
仍存在一些缺陷与不足
虽然大数据在犯罪预防中的积极作用较为明显,但也存在较多的缺陷与不足。主要体现在以下几个方面:
大数据的信息来源主要是基于用户使用互联网搜索引擎的蛛丝马迹而获得,不可避免地存在侵犯他人隐私权的嫌疑。因在收集大数据的过程中涉嫌侵犯他人隐私权而遭受调查或起诉的案例不胜枚举。例如,谷歌公司曾因使用大批车辆在全球各大城市拍摄全景式街道照片,不慎从与无线网络连接的私人电脑中收集到完整的电子邮件和密码,被英国官方以隐私权遭受侵犯为由对其进行调查,最终认定谷歌存在侵犯隐私权的违法事实并对其处以巨额罚款。
大数据获取的信息证明力未能达到排除一切可能的程度,一旦出现判断失误,往往会产生一系列负面效应。众所周知,大数据的功能只是对未来社会发展轨迹的一种预测,难免会出现与客观真实不一致的情况,一旦出现判断失误,将会导致预防对策的欠准确性,进而产生负面效应。也就是说,在目前整体性预防体系之下,一旦发现某地区有犯罪的迹象,只能通过在该地区增强威慑力以达到预防目的,这必然需要投入大量司法资源,一旦预测失误,将会导致司法资源浪费等一系列的负面连锁反应。
大数据的运用将耗费大量的财力、物力、人力,如果与打击犯罪平衡不当,会影响对犯罪的打击力度。随着社会文明的到来,对于私力救济的摒弃成为历史的必然,尤其涉及到犯罪领域,惩治犯罪与预防犯罪均集中于国家的宏观层面。不可否认,我国的犯罪增长率还比较高,在有限的司法资源下,国家投入打击犯罪的司法资源越多,越会挤压大数据的使用空间,因为大数据的开发、研究、运用将会消耗较大的财力、物力、人力,而在司法资源总量不变的情形下,大数据可利用的司法资源极为有限。反之,如果在大数据运用方面投入过多的财力、物力、人力,将会影响对犯罪的打击力度。如何在打击犯罪与现代型技术革新之间取得平衡,还需探索可行的办法。
扬长避短完善对策
如何扬长避短是大数据发挥应有价值的关键,因而应重视以下完善对策。
健全和完善隐私权保护等方面的立法,提高行业自律。目前在世界范围内,对隐私权的保护主要有两种方式:一是通过立法加强对隐私权的保护;二是通过行业自律保护隐私权。虽然立法能够提供较为明确的保护标准,但法律存在滞后性,一旦社会发展变化而法律未能及时跟进完善,便会出现保护漏洞;行业自律则完全依靠行为人的道德标准,对违反者仅给予行业内的处置,处罚力度畸轻。两者各有利弊,我国应当双管齐下,既要在立法中加大对隐私权的保护力度,例如规定侵犯隐私权的具体构成要件以及侵犯他人隐私权将会面临何种处罚等相关内容,又要提高行业自律,对那些易掌握他人隐私权的行业,提高从业人员的素质、设置从业人员相关的保密义务、明确违反保密义务所应承担的法律责任。
完善大数据处理模式的建构,确保预测结论的科学合理。科学合理的预测结论可避免浪费有限的司法资源,但这对数据库模型建构提出了较高的要求。目前,数据库模式主要包括概念模型、层次模型、网状模型、关系模型、面向对象模型等几种,无论基于何种模型建构数据库,均会面对较为庞杂的数据处理问题。因此,对处理因子的选择至为关键。笔者认为,可以按照大数据处理词义模型的基本原理,在建构大数据的过程中对需要的关键因子进行必要的筛选。关键因子是承载大数据精准性的重要因素,对关键因子划分得越详细,因子之间表面上存在重合或者相关的几率越小,然后再按照处理词义模型的全概率计算公式计算,即可得出较为科学合理的结论。
加大司法资源的投入力度,为大数据研发提供较为充足的经费保障。随着现代科学技术日新月异的发展,计算机等高智商犯罪呈现高发趋势,跨国犯罪团伙也异常活跃,未来社会的治理不是传统型措施所能应对的。现代国家之间的竞争也不仅仅局限于传统的武器制造与比拼,而是对数字信息资源的争夺,谁掌握了较为先进的科学技术,取得了数字信息资源的优势,谁就能在激烈的国家竞争中取得主动权以及话语权。但同目前世界发达国家在大数据研发方面投入的司法资源相比,我国还存在较大的差距,这是由我国整体的经济发展水平所决定的。在新一轮资源分配中,应当对大数据研发这一领域有所倾斜,为司法机关真正实现大数据在犯罪预防中的价值提供重要保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01