
网站分析数据收集方式详解
回顾网站数据分析历史,从“您是第***位来访用户”到现在百家齐放的专业工具提供商,网站分析已经逐渐发展衍化成一门科学。但面对形态各异的分析数据,很多人仍然困惑于数据的来源,了解数据的收集原理,也许对你解决这些困惑有所帮助。
眼下网站分析数据主要有三种收集方式:Web日志、JavaScript标记和包嗅探器。
1. Web日志
下图是Web日志收集数据过程的示意图。
从上图可以看出网站分析数据的收集从网站访问者输入URL向网站服务器发出http请求就开始了。网站服务器接收到请求后会在自己的Log文件中追加一条记录,记录内容包括:远程主机名(或者是IP地址)、登录名、登录全名、发请求的日期、发请求的时间、请求的详细(包括请求的方法、地址、协议)、请求返回的状态、请求文档的大小。随后网站服务器将页面返回到访问者的浏览器内得以展现。
一些专业的工具厂商会有专门的处理服务器对大量的Log数据进行处理,并将处理后的数据存放入自己的数据库中。网站经营人员通过访问分析报表系统查看网站的分析数据。也有一些中小网站主出于成本的考虑不会求助于专业的工具厂商,他们会借助简单的网站日志分析软件完成对Log数据的处理,当然处理后的数据会有一定的局限性。
2. JavaScript标记
下图是JavaScript标记收集数据过程的示意图。
上图所示JavaScript标记同Web日志收集数据一样,从网站访问者发出http请求开始。不同的是,JavaScript标记返回给访问者的网页代码中会包含一段特殊的JavaScript代码,当页面展示的同时这段代码也得以执行。这段代码会从访问者的Cookie中取得详细信息(访问时间、浏览器信息、工具厂商赋予当前访问者的userID等)并发送到工具商的数据收集服务器。数据收集服务器对收集到的数据处理后存入数据库中。网站经营人员通过访问分析报表系统查看这些数据。
JavaScript标记以其快捷性和精确性已经得到大多数工具厂商的青睐,已经发展成为当前最为流行的数据收集方式。
3. 包嗅探器
下图是包嗅探器收集数据过程的示意图。
上图可以看出网站访问者发出的请求到达网站服务器之前,会先经过包嗅探器,然后包嗅探器才会将请求发送到网站服务器。包嗅探器收集到的数据经过工具厂商的处理服务器后存入数据库。随后网站经营人员就可以通过分析报表系统看到这些数据。
4. 数据收集方式的优劣比较
没有一种数据收集方式是完美无缺的,不同数据收集方式也决定了各自的特性,了解不同收集方式的优劣所在,会对工具的选择也有一定的指导作用。
下表是三种数据收集方式的优劣比较详细:
Web日志 | JavaScript标记 | 包嗅探器 | |
优点 |
・比较容易获取数据源 ・方便对历史数据再处理 ・可以记录搜索引擎爬虫的访问记录 ・记录文件下载状况 |
・数据收集灵活,可定制性强 ・可以记录缓存、代理服务器访问 ・对访问者行动追踪更为准确 |
・对跨域访问的监测比较方便 ・取得实时数据比较方便 |
缺点 |
・无法记录缓存、代理服务器访问 ・无法捕获自定义的业务信息 ・对访问者的定位过于模糊 ・对跨域访问的监测比较麻烦 |
・用户端的JS设置会影响数据收集 ・记录下载和重定向数据比较困难 ・会增加网站的JS脚本负荷 |
・初期导入费用较高 ・无法记录缓存、代理服务器访问 ・对用户数据隐私有安全隐患 |
决定选择采用哪种数据收集方式之前,你需要先了解自己的需求。如果你不想自己网站的流量数据被任何第三方获取,那么Web日志无疑是你的最佳选择了。但想得到更贴近网站访问者行为的精确数据,还是需要采用JavaScript标记收集数据。这种数据收集方式不仅可以对缓存访问、代理访问正确记录,而且可以通过Cookie对独立访问者进行更为精确的定位。
当然也有一些网站为了获得多方面的数据而同时采取多种数据收集方式。例如采用JavaScript标记收集精确数据的同时,为了搜索引擎优化对Web日志中的搜索引擎爬虫记录也进行分析。也有已经采用包嗅探器收集数据,但为获取缓存访问而同时进行JavaScript标记。
采取何种数据收集方式也就很大程度决定了分析工具的选择,但仅仅从这一个方面考虑工具如何选择还是不够的,后面的内容会详细介绍在选择工具前,你都需要从工具提供商那里了解哪些技术参数来帮助你做出理智的判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01