京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站分析数据收集方式详解
回顾网站数据分析历史,从“您是第***位来访用户”到现在百家齐放的专业工具提供商,网站分析已经逐渐发展衍化成一门科学。但面对形态各异的分析数据,很多人仍然困惑于数据的来源,了解数据的收集原理,也许对你解决这些困惑有所帮助。
眼下网站分析数据主要有三种收集方式:Web日志、JavaScript标记和包嗅探器。
1. Web日志
下图是Web日志收集数据过程的示意图。
从上图可以看出网站分析数据的收集从网站访问者输入URL向网站服务器发出http请求就开始了。网站服务器接收到请求后会在自己的Log文件中追加一条记录,记录内容包括:远程主机名(或者是IP地址)、登录名、登录全名、发请求的日期、发请求的时间、请求的详细(包括请求的方法、地址、协议)、请求返回的状态、请求文档的大小。随后网站服务器将页面返回到访问者的浏览器内得以展现。
一些专业的工具厂商会有专门的处理服务器对大量的Log数据进行处理,并将处理后的数据存放入自己的数据库中。网站经营人员通过访问分析报表系统查看网站的分析数据。也有一些中小网站主出于成本的考虑不会求助于专业的工具厂商,他们会借助简单的网站日志分析软件完成对Log数据的处理,当然处理后的数据会有一定的局限性。
2. JavaScript标记
下图是JavaScript标记收集数据过程的示意图。
上图所示JavaScript标记同Web日志收集数据一样,从网站访问者发出http请求开始。不同的是,JavaScript标记返回给访问者的网页代码中会包含一段特殊的JavaScript代码,当页面展示的同时这段代码也得以执行。这段代码会从访问者的Cookie中取得详细信息(访问时间、浏览器信息、工具厂商赋予当前访问者的userID等)并发送到工具商的数据收集服务器。数据收集服务器对收集到的数据处理后存入数据库中。网站经营人员通过访问分析报表系统查看这些数据。
JavaScript标记以其快捷性和精确性已经得到大多数工具厂商的青睐,已经发展成为当前最为流行的数据收集方式。
3. 包嗅探器
下图是包嗅探器收集数据过程的示意图。
上图可以看出网站访问者发出的请求到达网站服务器之前,会先经过包嗅探器,然后包嗅探器才会将请求发送到网站服务器。包嗅探器收集到的数据经过工具厂商的处理服务器后存入数据库。随后网站经营人员就可以通过分析报表系统看到这些数据。
4. 数据收集方式的优劣比较
没有一种数据收集方式是完美无缺的,不同数据收集方式也决定了各自的特性,了解不同收集方式的优劣所在,会对工具的选择也有一定的指导作用。
下表是三种数据收集方式的优劣比较详细:
| Web日志 | JavaScript标记 | 包嗅探器 | |
| 优点 |
・比较容易获取数据源 ・方便对历史数据再处理 ・可以记录搜索引擎爬虫的访问记录 ・记录文件下载状况 |
・数据收集灵活,可定制性强 ・可以记录缓存、代理服务器访问 ・对访问者行动追踪更为准确 |
・对跨域访问的监测比较方便 ・取得实时数据比较方便 |
| 缺点 |
・无法记录缓存、代理服务器访问 ・无法捕获自定义的业务信息 ・对访问者的定位过于模糊 ・对跨域访问的监测比较麻烦 |
・用户端的JS设置会影响数据收集 ・记录下载和重定向数据比较困难 ・会增加网站的JS脚本负荷 |
・初期导入费用较高 ・无法记录缓存、代理服务器访问 ・对用户数据隐私有安全隐患 |
决定选择采用哪种数据收集方式之前,你需要先了解自己的需求。如果你不想自己网站的流量数据被任何第三方获取,那么Web日志无疑是你的最佳选择了。但想得到更贴近网站访问者行为的精确数据,还是需要采用JavaScript标记收集数据。这种数据收集方式不仅可以对缓存访问、代理访问正确记录,而且可以通过Cookie对独立访问者进行更为精确的定位。
当然也有一些网站为了获得多方面的数据而同时采取多种数据收集方式。例如采用JavaScript标记收集精确数据的同时,为了搜索引擎优化对Web日志中的搜索引擎爬虫记录也进行分析。也有已经采用包嗅探器收集数据,但为获取缓存访问而同时进行JavaScript标记。
采取何种数据收集方式也就很大程度决定了分析工具的选择,但仅仅从这一个方面考虑工具如何选择还是不够的,后面的内容会详细介绍在选择工具前,你都需要从工具提供商那里了解哪些技术参数来帮助你做出理智的判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01