
数据分析的三大误区
Mr.林:小白,刚才对数据分析进行了简要介绍,而在实际的学习、工作中,常常有数据分析人员陷入一些误区,现在我来讲一讲这些误区,你日后一定要注意。
小白:好的,请Mr.林指教。
分析目的不明确,为分析而分析
Mr.林:经常有人问:要用多少图?除了摆数据,还需要说些什么?在此我想说的是,数据分析不应为了分析而分析,而是应该围绕你的分析目的(了解现状、找出业务变动原因、预测发展等)而进行分析。
只有对自己的目的有清晰的认识,你才知道要怎样去实现这个目的,需要通过哪些图表展现,才会知道这些图表是否能反映问题,自然而然地进行相应的问题分析,而不是连该说些什么都不知道。
缺乏业务知识,分析结果偏离实际
Mr.林:目前现有的数据分析师大多是统计学、计算机、数学等专业出身,他们大多缺乏从事营销、管理方面的工作经验,对业务的理解相对较浅,对数据的分析偏重于数据分析方法的使用,如回归分析、相关分析等。
有的公司老板抱怨手下的数据分析师每天给他看几十个零散数据,虽然做出的报告很专业,图表也很漂亮,但所作的分析忽视了业务逻辑上的关联性,得不到全面、综合性的结论。
在企业中所作的数据分析不是纯数据分析,而是需要多从业务方面进行分析,不应停留在数据表面,要思考数据背后的事实与真相,使得分析结果更加切合实际,为老板的决策提供有力的支撑,否则就是纸上谈兵。
所以说,数据分析师的任务不是单纯做数学题,数据分析师还必须懂营销,懂管理,更要懂策略。
一味追求使用高级分析方法,热衷研究模型
Mr.林:在进行数据分析时,相当一部分人都喜欢用回归分析、因子分析等高级分析方法,总认为有分析模型就是专业的,只有这样才能体现专业性,结果才是可信的。其实不然,高级的数据分析方法不一定是最好的,能够简单有效解决问题的方法才是最好的。
我们坚信,仅有分析模型远远不够,围绕业务发现问题并解决问题才是数据分析的最终目的!不论高级的分析方法还是简单的分析方法,只要能够解决业务问题,就是好方法,正如我们常说的“不论黑猫还是白猫,只要能抓老鼠就是好猫”。
小白:好的,我在以后的工作中会注意这些的,做好一个数据分析师并不是一件容易的事,我要努力向Mr.林靠齐。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01