
告知5件大数据能不能做的事
引言
“大数据让我们变得更智能,而不是更聪明。”– Tim Leberecht
“大数据”一词早在20世纪40年代就出现了。全世界的公司都在竭尽全力地探索它的潜力。全球的科技巨头们都在大幅增加大数据技术的支出。这种趋势在主要行业的竞争者间还在加剧。
结果,根据调查公司IDC的预测, 大数据技术及服务直到2019年将以每年23%的速度增长.2019年在大数据上的支出将达到486亿美元。
这就是为啥大数据正在被全世界人们接受的原因。
公司从大数据身上看到了一线生机,让他们可以利用任何大小的数据。智能手机、GPS、传感器等在收集数据方面都发挥着作用。每一比特的数据都被收集起来然后处理成对我们(客户)有价值的信息。
在大数据不断给人们带来效益的时候,人们没有看到它 “不能” 做的事情, 也让我感到惊讶。但是我很快意识到,大数据不断的补充我们的商业直觉却绝不会成为替代品。
在本文中,我将过去7天的调查呈现给各位。我强烈的好奇心驱使我这样做。大数据对一个公司成功是至关重要的事实让我无法理解。大数据分析能胜任很多事情,但也有很多事情无能为力。
注意:我的想法并无完全,只是给各位提供一个思路。随便将你的想法留言在评论区中吧。
“大”数据的”小”练习
这个练习将为我们的将来做好准备。我们必须清楚要发生的事情还在后头。如果你在阅读这里,我请你考虑这样一个问题,你只需要写出(我已经共享了答案):
比如,如果我使用与大数据相关的平台得出这样一个逻辑结论,X是不可能的。我将排除与X有关的所有业务问题,能明白吗?
以下就是我的一个清单。如果你不同意下列中的观点,那么请证明一下吧!我会很乐意即使修改我的清单。让我们用一些商业直觉和分析的注解来开始解释我的一些思想。
80:20法则
这个法则说的是
“花80%的时间从过去的数据创建故事,20%的时间花在用现在的商业把这些故事串联起来”
说明:我相信没有跟商业直觉联系起来的分析见解都是没有用的。同意么?而且, 随着时间的流逝,以数据为驱动的部分在成指数级增长。 公司正在被数据的洪流所淹没。但这真的有用吗?不!
公司必须意识到,正确的将成功的商业分析与需要的商业视觉的比例是80:20。
如果我们建立一个故事用80%的时间分析过去的信息以求得对未来的预期,我们需要投入20%的时间思考这些信息对我们的业务有没有帮助。我们必须想到一些可以改变我们的将来和满足更广泛的业务目标的方法。这需要很强的商业理解力和良好的业务规则的知识。
这条法则中20%的成分是无可替代的。因此,人类的介入是为了解决这20%的问题,机器是不能满足的。即使是人工智能也不行。因为,人类的创造力是在无拘束的思考中诞生的。我相信创造力是机器无法带给我们的。我的清单正是受到了这个法则的启发。
5件大数据可以做到的事情
1.诊断分析 :我们每天都在做这个事情。机器更擅长做这个。当一个事件发生的时候,我们发现对寻找起因感兴趣。比如,设想在沙漠A挂起了沙暴,我们有沙漠A地区的各种参数:温度,气压,骆驼,道路,汽车等等。如果我们能将这些参数跟该地区的沙暴联系起来,如果我们知道一些因果关系,我们可能就会避免沙暴。想象下大数据的威力。
2.预测分析 :我们经常做这个事情。预测分析是根植在我们的DNA里的。比如,我们在全球有一个酒店连锁。现在我们需要找出那些酒店是没有达到销售目标的。如果我们知道的话我们就可以将努力集中在他们身上。这成为了预测分析的经典问题。
3.在未知元素间寻找关联 :我喜欢这部分分析。比方说销售雇员的数量跟销售额真的没有关系吗。你可能会减少一些雇员来看看是否真的对销售额没有损失。
4.规范的分析 :这是分析学的未来。比如说我们尝试着预测一个在大众目标的恐怖袭击然后安全的将人们转移的策略。做出这个预测,你需要做出在那个时候那个地点的游客人数,可能会被爆炸所影响到的地区等各种预测。
5.监控发生的事件 :行业中的大部分人都在做监控事件的工作。比如,你需要检测一个活动的反馈找到强烈和不强烈的部分。这些分析成为运营一个企业的关键
5件大数据不可以做到的事情
1.预测一个确定的未来 :使用机器学习的工具我们可以达到90%的精度。但是我们无法达到100%的准确。如果我们可以做到的话,我可以确切的告诉你谁才是目标以及每一次100%的响应率。但可惜的是这绝不会发生。
2.归咎于新的数据源 :在任何分析上,归责耗费了大部分时间。我相信这就是你的创造力和商业理解的来源。可能的是,你无法摆脱在你的分析中最无聊的部分。
3.找到一个商业问题的创新的解决方案 :创造力是人类永远的专利。没有机器可以找到问题的创新的解决方法。这是因为即使是人工智能也是由人们去编码的产物,创造力是不会从算法自己学习而来的。
4.找到定义不是很明确的问题的解决方法 :分析学最大的挑战就是从业务问题中形成一个分析问题模型。如果你能做得很好,你正在成为一个分析明星。这种角色是机器无法取代你的。比如,你的业务问题是管理损耗。除非你定义了响应者,时间窗口等,没有预测算法可以帮你。
5.数据管理/简化新数据源的数据 :随着数据量的增长,数据的管理正在成为一个难题。我们正在处理各种不同结构化的数据。比如,图表数据可能更适合网络分析但是对活动数据是没用的。这部分信息也是机器无法分析的。
最后
我相信这篇文章将发挥它的潜力如果你尝试了文章中的练习的话。试着从一个更全面的视角中思考,你会发现机器无法做到的事情。比如,我的初始点80:20法则指出机器将无法带来创造力。这个启发点帮我思考在分析的过程中那些部分是需要创造力的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01