
解析大数据的五大陷阱
大数据庞大而又复杂。这不仅体现在信息的积累上,而且体现在其对经营策略的影响上。据IDC预测,2018年,全球业务分析开支将高达896亿美元。成功利用大数据已成为众多企业的关键要素,其中包括制定平台战略,无论它是“数据中心”,还是“数据平台”亦或是“数据湖”。
很多还未实施大数据项目的企业正在评估他们2016年的数据战略,其它公司则在审视它们现有的项目,探索利用分析改善经营和增加收入的新方法。事实上,大数据并不容易做到。据Gartner预测,直到2018年,由于技能和集成上的问题,70%的Hadoop系统可能将无法满足成本节约和创收目标。因此,如何才能把大数据“物尽其用”变得至关重要。以下是一些您应该规避的最常见的大数据陷阱:
陷阱1:缺乏企业平台或以数据为本的架构
Hadoop系统通常是以具体应用的原型身份进入企业的,然后逐渐成为重心,吸引越来越多的数据,并很快成为一个巨兽——由一小撮“数据科学家”领导的数字运算引擎。企业必需从一个企业平台策略和一个以数据为本的架构开始,打破在各种规模的企业中盛行并削弱企业力量的数据孤岛。大数据需要能够在一个完全可扩展的分布式环境中实施并行处理,并尽可能地减少阻力。与传统数据库系统或应用孤岛不同,在一个以数据为本的架构或企业平台中,数据不受限制,不绑定模式,也没有被锁定。
陷阱2:缺乏“数据湖”愿景
对于企业而言,“数据湖”具有改变游戏规则的变革性意义。它是一个数据集中目的地,可提供企业急需的各类型的数据集成,其中包括结构化、非结构化和半结构化数据以及内部数据、外部数据和合作伙伴数据。数据湖存储库通过“大数据经济学” 创造巨大效益,与传统解决方案相比,它可将数据存储和分析的成本降低30到50倍。 数据湖能够在任何数据转换或模式创建之前捕获“原始数据”,并提供自动快速摄取机制。在向企业数据接入、无缝数据访问、迭代算法开发和敏捷开发演进的过程中,数据湖发挥着举足轻重的作用。
陷阱3:没有针对数据增长和成熟度进行规划
当数据湖成为默认的数据目的地时,管理和细粒度安全性从一开始就变得异常重要。元数据访问及存储、数据沿袭及标注会成为内置,而原始数据和不同阶段的转换数据仍能毫无冲突地共存。各类应用可以通过Hadoop使用彼此的数据。外部数据可以根据明确的处理/分析要求被屏蔽或集成,所有数据集能够在数据湖中和睦相处,这提高了数据的可用性,缩短了应用部署时间,并可支持无限的数据扩展和增长。
陷阱4:分析小样本数据集
很多人认为数据不需要被集成,人们可以使用小样本数据集,这是一种危险的错误观念,因为这会导致分析结果常常被延展到较大的数据集,而且不考虑差异,少则造成误导,严重的话甚至可能导致极度扭曲的结果。这通常被称为小样本数据集分析魔咒。例如,当您使用小样本数据集时,您可能会遇到很多离群数据或异常数据。如果使用的是小样本数据集,您无法知道异常数据在较大的数据集中是否具有结构性,或离群数据是否处于一种具备明确特征的模式。
陷阱5:采集更少的数据,依赖更高级的算法
另一个错误观念是:高级和复杂的算法能够解决所有问题。如果是这么简单的话,生活就太美好了。由于是在逻辑进程上运行,计算机将无条件地处理意外、甚至荒谬的输入数据,并生成无用、荒谬的输出数据。在信息与计算机科学中,当未被净化的数据被输入到复杂算法中,被称为“垃圾进入/垃圾输出”。缺失/稀疏的数据、空值和人为错误必须被清除。IT人员应避免依赖未经验证的假设或弱关联,而去尽可能多地采集数据,让数据自己说话。在部署数据平台时,这一点非常经济高效。
制定一个成功的大数据策略
如果将规避以上陷阱做为动机,从一开始就把事情做对,即可事半功倍,帮助企业更快、更好地利用大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29