京公网安备 11010802034615号
经营许可证编号:京B2-20210330
每天的微信数据分析必不可少
要想把微信运营的好,每天的微信数据分析是必不可少的,那么都应关注那些数据呢,在观看数据之后如何调整今后的微信运营工作呢?下面咱们好好聊聊。
微信公众平台提供部分数据显示和统计功能,例如关注人数的增加和减少,图文阅读量等信息,一直都是微信公众平台上的常规显示数据。这次我要给大家讲的数据主要就是
1.图文阅读
2.粉丝增长量
3.粉丝的回复
4.粉丝的分类
那下面我就具体说说这四项数据背后具体都说明了一个什么样的问题。
1.图文阅读量
图文的阅读主要能够数据分析的就是我们的每篇文章具体的阅读人数和转发收藏量,这个最能够说明我们的文章内容的标题怎么样,内容是否好。因为一篇文章的阅读量不能说明文章就是好的,还要看看转发收藏量才能说明,如图:
我们可以看到这些阅读量好的内容可以达到上千的阅读量,转发收藏量也很高。通过阅读量和转发收藏量这两者的对比我们就可以大概的估算出这篇文章的内容是否好。再看看最后一张虽然说有几十的浏览量,但是没有形成转发收藏量,这就说明了一个问题,那就是我们的内容不好,即使是粉丝点击进去了但是我们的内容不吸引粉丝就无法形成转发收藏。在一个就是标题取得是否好,如“不识字老婆给老公写的信,老公立马回家了!你看懂了吗”这个标题能够很好的吸引粉丝的阅读兴趣,是什么原因就立即回家了呢?这个设置了悬念,所以阅读量还是比较好的。所以通过图文阅读能够说明我们的内容以及标题是否好,好的内容和标题能够吸引更多的粉丝阅读分享。
2.粉丝增长量
粉丝的增长量主要是能够说明我们的内容以及昨天的推广做的怎么样,以及我们的推广是否精准。如图:
我们通过数据可以看到,有时的粉丝增长量几十有时候几个甚至没有,基本上每天的取消关注量都是有的。这个说明了我们的内容不是属于这群粉丝想要的,这就是我们推广粉丝的时候不是精准的粉丝。那么我们今后推广的时候就要注意这点了,不是说什么类型的粉丝我们都可以推广的,我们一定要推广与自己公众号相符的粉丝,不然你辛苦推广来对你的内容不感兴趣,结果还是会取消关注的。
3.粉丝的回复
粉丝的回复主要是我们没有开通评论功能(现在评论功能还没有全部开放),粉丝有时想和我们互动,那么他就只有通过聊天界面给我们发送内容了。粉丝回复的内容我们一定要及时去回复,过了48小时之后我们就不能够回复了。我们需要着重的和这些发过消息的粉丝建立好关系,如图:
粉丝之所以会回复我们是因为他对我们是认可的,是我们的铁杆粉丝,这就需要我们去进一步维护好关系了,因为我们的内容也是靠这些粉丝来分享转发的,那么我们就能够靠他们分享的时候带来些新的粉丝。
4.粉丝的分类
粉丝的类型就是我们微信公众号的定位,我们只有把自己的定位订好了以后,那么我们才能够更好地根据这个去推送相关的内容和推广粉丝了。我们可以根据后台的数据看到我们的粉丝都是属于什么群体具体分布在哪些城市,如图:
我们可以看到粉丝主要是以男性还是女性为主,还有我们的粉丝主要是分布在哪些城市的。通过这个我们就能够很好的把自己定位下来。然后推送相关的内容,比如:被震惊了(beizhenjingle)那么就需要我们推送与男性有关的内容,如果有地区热门的内容的话,那么我们就可以考虑下我们粉丝分布比较多的那个地区的内容。这样我们的内容展现和分享的就会更加多,这个数据是十分重要的粉丝定位的方法。
所以说数据分析是一门艺术,是必不可少的,因为通过数据分析我们可以看到很多我们表面看不到的现象,能够很好地分析我们粉丝的动态,然后根据数据逐步调整我们的运营方式。可以说要想运营好微信那么我们就一定要每天分析我们后台的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22