京公网安备 11010802034615号
经营许可证编号:京B2-20210330
执法部门是如何运用大数据的?
随着大数据的发展,大数据以应用的很多领域,执法部门是如何运用大数据的?
日益增长的安全威胁,以及预算缩减给全球范围的执法机构施加了巨大压力,使得他们不得不提高他们利用有限资源的效率。所以那么多机构都开始使用大数据,因为大数据可以帮助他们解决各自社区紧急问题。
在进行研究大数据分析的强大之前,了解清楚大数据的有关信息至关重要。
什么是大数据?
简单来说,就是不同资源数据的采集分析,旨在不同的数据集中识别出有意义的模式。换句话说,采集分析来自传感器、手机数据、社交媒体和互联网这些不同角度的数据可以进一步了解一个人或者搞清一个问题。关键是要核对不同的数据格式并找出你需要的,其中包括结构化数据和非结构化数据。
既然你已经有了一个基本的了解,现在就一起来探讨一些用来提高执法机构工作效率的大数据应用程序吧。
执法分析
执法分析(LEA)是一组基于大数据原则的系统,并给执法机构工作人员提供可操作信息。这些系统联合所有的现有信息,把看似无关的数据建立起关系并通过仪表盘和屏幕用简单的格式呈现出来,这样就方便了执法部门人员行事。最重要的是,执法人员不用再靠复杂的系统来获取需要的信息,这既节约了时间也提高了效率。
预测分析
执法部门人员如何在不增加成本的情况下,有效减少犯罪?
通过劝说大家不要破坏法律?还是给罪犯更严厉的处罚?亦或是采购更猛的武器炸弹?
必然不是!
而是提前预测出犯罪。
这正是基于大数据的预测分析系统。该系统联合了来自各种资源的数据,并用复杂的算法来预测下次犯罪的种类和犯罪地点。这些信息有利于执法人员及时到达犯罪现场并有效阻止犯罪的发生。这种系统节省了时间及其他成本,执法机构也因此可以避免进行无效的追逐,同时预防犯罪。
洛杉矶警察局用PredPol软件就是个很好的例子。该软件使用了地点、时间和犯罪性质这三个数据点来预测犯罪的发生时间和地点。这个软件的确起到了作用,从2013年1月到2014年1月,洛杉矶警察局的山麓部门就发现犯罪率下降了20%,更意外的是,2014年2月13日破天荒成了零犯罪日。
实施条例
警察花费许多时间来检查药物利用指数、安全带和车速以减少交通事故的发生。尽管有这些努力,交通意外的发生数量依旧在上升,因为现有的工作人数不足以巡逻所有的高速违规。
这也是为什么许多执法部门比如田纳西州公路巡逻队开始使用大数据系统的原因。
由IBM公司发明的交通事故系统通过识别药物利用指数和地点、时间、天气情况以及其他相关因素来预测将发生的事件。基于这个系统,田纳西州公路巡逻队只需要集中于意外高发的地段和时间,即可减少交通事故,同时得益于这个系统,该州2014这一年成为1963年以来发生交通事故率最少的一年。
情报共享
传统上来说,数据被孤立在不同的部门,任何部门需要信息都必须要通过复杂的程序才能得到。这样低效率的分享也影响了各部门的办事效率。可喜的是,大数据已经改变了这种不合理的方式,如今大数据存在于不同的部门中,汇集分析起来也非常方便。因此,情报工作可以做的更精确,并且通过鼠标点击就可以在不同的执法机构之间共享。
总的来说,以上的应用程序暂且还不能替代执法机构人员来工作,但它们却是能够有效打击犯罪的强大工具,同时也能帮助各部门充分利用起手头现有的资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08