京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析:安全变革的下一个着力点
当前的IT应用背景是移动和云的同步快速部署,企业边界被打开,企业无法自身完成所有的安全防护,而需要IT供应商、安全厂商共同帮助其在员工的个人设备、企业内部及产业链上下游共同构建安全防御和管理体系;同时在攻击方式上,目标导向型攻击(ATT)和高级持续性攻击(APT)正成为主要的攻击手段。这两种威胁目的性更强,且攻击手法经过精心设计,特征极难发现。企业对威胁的防御已经不可能再是简单部署安全设备,发现并过滤符合特征的威胁。"数据分析师"而是要通过将各种安全防护手段和信息有机整合起来,一方面防止因新的IT漏洞和应用方式(如移动接入、个人应用等)引入更多的安全风险,另一方面要对整个安全态势做到统一可视及管理,在尽可能短的时间内,发现已经发生或潜在的安全问题,并采取措施保证高价值资产不被盗取或破换。
吴海涛谈到企业在安全和风险管理上面临着几个严重挑战,“一是缺乏端到端的企业整体安全解决方案;二是缺乏统一的安全防御模型,信息的共享与使用存在困难,不同系统之间在安全架构与模型、信息通告、接口标准等方面缺乏统一与协作,导致虽然企业建立了多种安全防御系统,但攻击仍然可以利用安全盲区发动;三是安全防御的成本急剧增加,攻防成本和效率失衡。用本次大会KeyNotes中的一句话来说就是:‘我们必须一直都是成功的,而黑客只需要成功一次就可以了。’”
从RSA看安全产业的主要发展趋势和创新焦点
本次RSA创新沙盘和KeyNotes应该说是集中体现了当前安全的主要发展趋势和创新焦点,简单总结起来有如下几个:
1、安全防御思想从以实时防御为重点走向对安全态势全面可视,综合大数据安全分析进行威胁和风险发现并采取针对性措施的全局性防御思路。很多厂商和组织都提出了要建立新的安全模型和协作机制,将整个基础设施和应用过程被纳入智能安全分析的机制中来。
2、不再局限于基于特征的威胁发现方式,而是采用机器自学习机制,将安全设备放到客户的实际应用环境中,通过一段时间的自学习和优化,建立起企业IT应用的一个正常模型,一旦发现企业的流量或应用特征违背了这个正常模型,则发出预警或执行安全策略进行防护。
3、策略部署自动化。策略部署自动化其实要求做到如下三点,第一是无缝、第二是统一、第三是自动。即做到固定、移动策略无缝、虚拟、物理环境策略无缝且统一管理。而且策略是动态调整并自动下发的。做到这一点就要求在架构上对固定和移动、物理和虚拟的网络环境要做到统一的管理和可视,同时具备策略自动化的机制。这也是开展未来基于云的安全服务的一项基础性技术。
大数据分析技术用于安全分析可以说是今年的热门话题,这不仅仅是在安全防御中又引入了一门新的安全技术,更重要的是它代表了防御思想的转换。但是要建立真正的大数据分析并具备自己的控制点并不容易,吴海涛谈到大数据安全分析要有几个方面的能力:首先"数据分析师"是要有一个高效的大数据分析云平台;其次要掌握大数据分析模型与算法。这是一项核心技术。关联分析引擎从传统的SIEM时代就是具备一定门槛的东西,现在大数据分析要关联的时间和空间尺度更大,更重要的是业务维度更多。如何整合这些信息将会成为所有有志发力于这个方向的第一个分水岭;三是跨平台、跨厂商异构的信息收集机制和大数据来源。产业链的合作和整合能力一定会成为厂商间角力的另一个重点,而基于信息共享的协作是超越所有安全技术的合作。
重新定义的安全
随着云、移动趋势的进一步深入,安全厂商在提出解决方案时更加强调通过大数据分析技术来提供整体的安全智能分析和策略驱动,强调在传统、移动和云环境下整体安全方案的无缝、可视与统一管理。吴海涛表示,这一切都彰显了安全产业正在经历技术和理念的快速变革。
1、安全管理被提到一个非常重要的地位。通过管理实现安全产品间的统一可视、有效联动、策略自动部署。这对改善用户的易用性体验、安全感知以及运维开销是非常有帮助的。安全管理的水平已经成为安全方案的核心竞争力之一;
2、移动及BYOD安全热度下降,但方案走向成熟,应用无关的安全隔离技术落地。移动安全已经成为安全方案中的必要环节。对于BYOD安全,VDI技术基本已不可见,移动沙箱隔离技术似乎已成为安全厂商的共识;
3、云数据中心安全方案落地;
RSA的一些启示与思考
透过以上RSA见闻,吴海涛风趣的谈到,华为正走在正确的道路上。华为在安全上的总体思想是对的,第一,要实现全网的安全协同,即基于全网的安全分析与联动防御能力;第二,要基于SDN的思想,实现安全的自动部署和策略自动化;第三,通过组件化实现安全软件和能力与安全硬件的解耦,让安全产品具备更灵活的部署能力和更丰富的商业模式。
而对于这些全新的安全挑战,吴海涛认为有几个问题值得重点关注和思考:首先是如何利用大数据构建安全分析和态势感知能力,尤其是如何在算法等核心技术上建立优势;其次创建统一的智能安全模型,并更新自己的安全理念。要实现智能驱动的安全方案,我们不仅仅是提供产品和方案,更重要的是通过现在的安全和网络产品我们能够提供什么信息,这些信息如何被数据分析师处理和分析并最终提供有效的防御,这决定了我们未来的安全方案架构、接口标准、产业链合作方向;三是覆盖方案完整性的产业链协作的合作体系建设。在未来,厂商的研发能力加上厂商能提供的合作伙伴协作能力才是交付给用户的最核心竞争力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21