
数据分析中遇到的“圆”
与十年前不同,当今令数据分析师迷茫的,可能不再是数据很少,而是数据很多;今天不是不知道玩好数据的重要性,而是不知道玩错数据的危害性,即所谓甜蜜的烦恼。一个数据分析师,如果能体会到,当下数据存在的核心问题,并且能清楚解决办法,就可以精益求精了。
这次想跟大家讲的是一个由受、想、行、识四个部份所组成生生不息的圈(Feedback Loop),彼此互相推进。
听起来有些玄乎,不过结合例子说就可能有意思了。
一、受
“受”,即是对周围世界的感受
当前,作为一个电商,去感受公司经营状况的方式越来越依赖于数据,但是,今天来说很少有电商敢肯定的说自己有较完整的数据去掌握公司的状况,这里面主要有二个原因:
首先是“堵”,当许多电商开始收集数据时,发现数据分布在不同的地方。举个简单例子,有的平台不知道投诉的数量积攒到什么程度了,因为投诉渠道有电话、邮件、微博等,没有统一的口径,没有去收集整理,或者即使有数据,只掌握在具体运营人员的手中,不能及时到达管理者的手中,如果一个公司的数据只有少数人才能看到,不能及时的上传下达,可想而知数据的驱动力有多小。相信堵的状况在电商中间很普遍,如果团队允许的话,当然要整理,不然就像闭着眼睛在打架。
其次是“散”,电商缺乏数据运营的经验,只知道要数据,却不知道需要何种的数据,或者空有数据却无从下手。正好前几天周末,有个电商和我说了自己公司数据的运营现状,他是一个传统的企业,收集了一堆很“散”的数据,不知如何是好。我给的建议就是在一堆散乱的数据中,从自己擅长的领域切入,比如传统品牌电商对供应链数据非常熟悉,就可以从最熟悉的供应链数据去与其它数据关联互动起来看,比如一款产品卖出了10000单,但有没有想到去关联到把多少人看了却没有买的数据也收集起来,交易数据和前台浏览数据联动起去可以发现更多新的问题。
二、想
“想”,即是对事物的认识与辨别
数据害死人,这是部分电商的看法。最直接的原因就是他们的数据虽然是对的,但客观的数据受到主观太多的影响,而导致实际造成中数据失灵,反而给电商指错了方向。比如没有去掉数据中的噪音,比如来源就不对,或者是主观上就想找不客观的数据,比如做产品经理的人,正在开发一款收费较高的新产品,这个产品经理会不断说服自己,拼命在数据中找一些你认为价值高的用户,最后越来越偏离客观实际情况。当分析人员遭遇“主观”的问题,错误的判断也就在所难免了。
明白了这一点,也就可以理解同样的数据在不同的人眼中为什么会呈现出截然不同的图像,因此看数据,需要大家从多个角色进行思考,而在这时,又会遇到“离”的问题:
大家说的数据不是统一标准,就那转化率来说,每个部分的分子和分母都不一样,市场部门说一个渠道转化率,网站运营说一个页面转化率,交流起来大家都不知道彼此说的转化率是什么,自然是离题万里。更有甚者,数据人员和管理人员对数据口径的定义南辕北辙,管理人员拿到的数据与他本意相差甚远,而他却用此数据去进行决策,可以想见效果如何。由此可见,如果一个公司的数据标准是模糊的,可以料见数据运营是多么的难以实现,说不定会被数据弄得晕头转向。
三、行
“行”,即是对事物的深入思考与分析
前面的例子还比较好理解,这就好出海航行,海图信息不准或方向不明,自然也就很难到达目的地。但是在数据分析中,还经常出现的问题是“涩”:方向明确、海图精准,但在具体航行过程中运转不灵,由于对业务的理解不够深刻,导致在分析中产生迷惘和混乱,数据运用的方式失当,最终管理者无法依靠数据分析进行决策。
举个实际操作中经常会遇到的例子:重复购买率降低了。按照前文提到,数据分析师脑子第一点要问的是:这个重复购买率的定义是什么,分母是什么,分子是什么,是在什么时间维度的定义看重复购买率的。但是如此看完之后,依然可能出现错误,因为就是没有考虑到商业之中的复杂因素。比如当天一个客户同时间下了两个单子,是算重复购买,还是算一个单子?新增客户最近是不是增长很多?新渠道的百分比有没有变化?最近是不是很长时间没有促销活动?是不是调整了页面布局?
所以,是实际的行动当中,需要把多重影响指标纳入坐标系里面,并且把数据的关联性建好了,就不会盲目为重复购买率下降而担心了。到了“行”这个阶段,必须懂商业,不然前功尽弃。
四、识
“识”,即是对事物根本的归纳,对事物认识的沉淀
受、想、行、识的最后一环是识,这里开始涉及到了数据分析的一大问题:“遗”,分析的成果和方法如何不能及时的被归纳和沉淀,电商就只能随分析师一起,不停追逐、探究新的分析视角,却可能对实际的运营决策并无益处。就今天的趋势来说,分析师的资源越来越宝贵,电商需要思考合适的机制和工具,可以把成功分析的结果、经验进行积累,应用于公司的日常管理中,及时将知识转变为“money”。
从数据中积累和沉定知识,最好是要用建立系统。也许许多电商认为建立系统非常麻烦,但实际上操作并不繁琐,只是要构建思路难想清楚。十几个人三个月的时间,可以把公司运营的核心数据放在系统里面,把数据分析的理念放在系统里面,让公司所有人都能看懂并运用。这其中有三个关键点:一是做好数据安全,让不同职位的人看到不同的数据;二是说清楚不同部门的数据标准,比如市场部的转化率用的是指下单的客户数量除以客户进来的总数量,财务部门的转化率是指下单成功的客户数量除以客户进来的总数量;三是让不同部门的数据可以关联起来看(如果电商有团队可以这么做的话),这样可以把数据运用扩散至数据部门之外。
这里只是我个人的一点小体会,从受、想、行、识四个部分组成的圆来帮助我"数据分析师"理清数据分析中的四个环节,并且数据分析经常需要反复跑数据,每一次反复利用,得到的收获更多。如果要说得深,还要分别说下去。这个过程,我也是处在摸索中,欢迎大家分享出自己的方法和思考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27