
看联通大数据时代的行业应用
“说话算数——2016联通大数据应用研讨会”这是联通在今年年初率先召开的运营商级别的大数据应用会议,一个旨在联通解析运营商大数据如何应用企业精准营销、行业创新和产业升级的论坛。
其实大数据已经不算什么新颖的名词,但是若论及大数据的应用,将其产品化,也许就不是我们能够认清、理解的范畴了。试问一堆看似无关的二进制资料,如何能够演变成可以打上品牌标签、丰富的产品体系和应用的呢?
全网终端数据集中化是个啥概念?继去年联通在乌镇大会上公布了首款大数据产品沃指数(涵盖行业指数和市场洞察两部分内容)之后,在这次的研讨会上,联通将沃指数中的“市场洞察”部分产品化、品牌化,而这个全新的品牌就是“数据魔方”。这也标志着联通作为巨头级大数据应用运营商,经过多年的数据累积、分析和开发,率先实现大数据的应用集中化、系统化、产品化、服务化。
截止到2015年底,联通大数据体系共涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,并已逐步在风险控制、金融服务、快消品、终端、汽车、旅游等细分领域实现了行业的创新应用。
现在看来,各家巨头均在争做自己的大数据,比如百度做,主要是在用户的搜索行为闭环里做大数据;阿里主要是在用户的电商行为闭环里做大数据;而腾讯的大数据则无法摒弃其基于用户社交行为的属性。各家在自己擅长的纵深领域随各有所长,但就数据的全面性、丰富性,以及获取渠道等因素来说,比起国字头的运营商则略显不足。中国联通的这些“全生命周期”数据不仅在数据维度上有更加多元化的优势,而且打破了很多P2P平台自建的模型获取、处理数据模式所形成的数据孤岛。
所谓数据黑洞,就是在进行大数据分析时,由于固定的分析模型所导致的大量信息的遗漏。数据其实最终一点就是在于流通,而以BAT为代表的企业,它所获得的全部数据均用于这个其自身体系之内,并没有任何将之开放出来的打算,也就是说这些数据是只进不出的。这便影响了数据需要“流通”的属性,既不利于营销,也不利于更加高效的去触达受众。
反观联通的大数据,其覆盖所有移动终端的广度和深度已不言而喻。通过综合维度的数据分析,联通大数据可以对特定的人群进行非常深入、精准的用户画像;通过智能的算法和分析,联通大数据能够精准找出目标和结果,准确发现用户需求变化与趋势,借以弥补单一纵深的数据维度,有效回避了“数据黑洞”所可能造成的信息遗漏,使企业可以更加了解自己的产品和用户,从而帮助企业提升市场洞察决策能力和精准广告销售能力。
如何让这些技术和产品在商业价值上有所体现呢?联通在大数据的金融、汽车、电商和快销品的各个领域,进行了很多积极的探索和商业化的应用。
例如,在与某车企的合作中,联通大数据就充分利用自身优势为该车企提供了详细的数据分析报告,以便该车企在接下来的销售策略调整中做出更准确的决策。
在这份分析报告中,首先是车企向运营商提供了样本用户,即已经是车主的存量用户的画像的分析。通过科学的大数据方法论,匹配出在几个亿的用户里面的潜在用户,再通过对潜在用户的消费能力以及消费欲望做具体分析,得出该用户是否为此款车型的精准客户。分析出汽车消费的精准用户群之后,通过相对这个群体在移动端对竞品车型的搜索、APP使用情况、驾龄以及地理位置分布等检测数据,精确的分析出与竞品的差异化。有了这些数据的支撑,该车企在之后的销售策略调整上无疑占据了市场主动权。
除此之外,联通大数据与金融产品、风险控制领域的成功案例也让大数据产品的价值在行业应用方面充分发挥。作为对传统风控模型的有益补充,联通大数据能够数据分析深度挖掘数据可用价值,进而弥补传统数据维度不全的现象;并可以优化风控模型能力,提高风险定价精细度,使其数据价值更加清晰,从数据的广度、深度、鲜活度等维度协助风控机构建立更加完善的风险管理视图。
现阶段用户的行为数据,尤其是网上行为数据,已经逐渐被纳入到信用风险模型中,成为判断个人信用、风险程度的变量。而联通大数据所具备的全面性、强相关性和实效性等特点,使其提供的用户信用评估更完整、更清晰。
目前,联通大数据已经开始实践跨行业的各类应用。在数据安全和数据应用监管方面,始终遵循严格的信息安全体系和流程,以确保数据安全、规范、合理地应用于金融、征信、精准营销等各个行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29