京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看联通大数据时代的行业应用
“说话算数——2016联通大数据应用研讨会”这是联通在今年年初率先召开的运营商级别的大数据应用会议,一个旨在联通解析运营商大数据如何应用企业精准营销、行业创新和产业升级的论坛。
其实大数据已经不算什么新颖的名词,但是若论及大数据的应用,将其产品化,也许就不是我们能够认清、理解的范畴了。试问一堆看似无关的二进制资料,如何能够演变成可以打上品牌标签、丰富的产品体系和应用的呢?
全网终端数据集中化是个啥概念?继去年联通在乌镇大会上公布了首款大数据产品沃指数(涵盖行业指数和市场洞察两部分内容)之后,在这次的研讨会上,联通将沃指数中的“市场洞察”部分产品化、品牌化,而这个全新的品牌就是“数据魔方”。这也标志着联通作为巨头级大数据应用运营商,经过多年的数据累积、分析和开发,率先实现大数据的应用集中化、系统化、产品化、服务化。
截止到2015年底,联通大数据体系共涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,并已逐步在风险控制、金融服务、快消品、终端、汽车、旅游等细分领域实现了行业的创新应用。
现在看来,各家巨头均在争做自己的大数据,比如百度做,主要是在用户的搜索行为闭环里做大数据;阿里主要是在用户的电商行为闭环里做大数据;而腾讯的大数据则无法摒弃其基于用户社交行为的属性。各家在自己擅长的纵深领域随各有所长,但就数据的全面性、丰富性,以及获取渠道等因素来说,比起国字头的运营商则略显不足。中国联通的这些“全生命周期”数据不仅在数据维度上有更加多元化的优势,而且打破了很多P2P平台自建的模型获取、处理数据模式所形成的数据孤岛。
所谓数据黑洞,就是在进行大数据分析时,由于固定的分析模型所导致的大量信息的遗漏。数据其实最终一点就是在于流通,而以BAT为代表的企业,它所获得的全部数据均用于这个其自身体系之内,并没有任何将之开放出来的打算,也就是说这些数据是只进不出的。这便影响了数据需要“流通”的属性,既不利于营销,也不利于更加高效的去触达受众。
反观联通的大数据,其覆盖所有移动终端的广度和深度已不言而喻。通过综合维度的数据分析,联通大数据可以对特定的人群进行非常深入、精准的用户画像;通过智能的算法和分析,联通大数据能够精准找出目标和结果,准确发现用户需求变化与趋势,借以弥补单一纵深的数据维度,有效回避了“数据黑洞”所可能造成的信息遗漏,使企业可以更加了解自己的产品和用户,从而帮助企业提升市场洞察决策能力和精准广告销售能力。
如何让这些技术和产品在商业价值上有所体现呢?联通在大数据的金融、汽车、电商和快销品的各个领域,进行了很多积极的探索和商业化的应用。
例如,在与某车企的合作中,联通大数据就充分利用自身优势为该车企提供了详细的数据分析报告,以便该车企在接下来的销售策略调整中做出更准确的决策。
在这份分析报告中,首先是车企向运营商提供了样本用户,即已经是车主的存量用户的画像的分析。通过科学的大数据方法论,匹配出在几个亿的用户里面的潜在用户,再通过对潜在用户的消费能力以及消费欲望做具体分析,得出该用户是否为此款车型的精准客户。分析出汽车消费的精准用户群之后,通过相对这个群体在移动端对竞品车型的搜索、APP使用情况、驾龄以及地理位置分布等检测数据,精确的分析出与竞品的差异化。有了这些数据的支撑,该车企在之后的销售策略调整上无疑占据了市场主动权。
除此之外,联通大数据与金融产品、风险控制领域的成功案例也让大数据产品的价值在行业应用方面充分发挥。作为对传统风控模型的有益补充,联通大数据能够数据分析深度挖掘数据可用价值,进而弥补传统数据维度不全的现象;并可以优化风控模型能力,提高风险定价精细度,使其数据价值更加清晰,从数据的广度、深度、鲜活度等维度协助风控机构建立更加完善的风险管理视图。
现阶段用户的行为数据,尤其是网上行为数据,已经逐渐被纳入到信用风险模型中,成为判断个人信用、风险程度的变量。而联通大数据所具备的全面性、强相关性和实效性等特点,使其提供的用户信用评估更完整、更清晰。
目前,联通大数据已经开始实践跨行业的各类应用。在数据安全和数据应用监管方面,始终遵循严格的信息安全体系和流程,以确保数据安全、规范、合理地应用于金融、征信、精准营销等各个行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23