京公网安备 11010802034615号
经营许可证编号:京B2-20210330
资深分析师谈中小团队如何分析用户质量
随着手游营销成本的增长,中小团队购买用户的开支也水涨船高。不过,在竞争日益激烈的手游市场,用户购买渠道也变得越来越多,如何辨别高质量渠道,找出有问题的用户来源成为很多中小团队不得不面对的问题。最近,Devtodev主分析师Vasiliy Sabirov{数据分析师}根据他5年的游戏分析经验,在博客中推荐了一些衡量、分析和辨别的方法,希望可以帮助中小团队进行更有效的用户购买。以下是编译的博文内容:
通常,特别是在小公司里,人们处理数据的方式是同样的。它们从并购中获得了一笔资金,购买流量,统计到大量的用户注册大量开始出现,所以该公司对此很高兴并且转向了其他任务。但突然之间,他们发现这么多的流量却没有带来收入,最后发现投出去的市场营销预算几乎是被浪费了。失败的原因,既有可能是游戏货币化出了问题,也有可能是这些流量带来的用户质量并不高。毕竟,据多方预测,付费购买来的用户当中的虚假(欺骗性的)流量占付费购买注册用户总数的20%-60%左右。
为了避免这种情况,你必须从一开始让数据分析师来分析买来的量,这里我们将会告诉你该怎么做。
使用相关数据
这些数据包括安装成本、安装量、收入,它们对于衡量和了解用户购买活动的效果是非常重要的。不过,这些数据根本没办法告诉你这些流量的质量如何。为了评估你买来的量是否足够好,你需要通过相关的用户数据进行了解,比如ARPU、CPI、付费比例、留存率以及投入回报率(ROI)等等。
这些数据可以描述流量的质量高低,还可以让你对比不同流量渠道的可靠性。
使用队列分析
记录用户注册的日期或者各个流量渠道的首批用户,然后根据时间来记录和研究用户的留存和货币化数据,比如次日、三日、七日、30日等等。我们以渠道A为例,了解用户注册一周后的情况并计算每个队列的数据:
比如累积1日ARPU、2日ARPU、7日ARPU…30日ARPU等等。
同样,计算累积收入并且把它与单个用户获取成本做对比,算出渠道A单个用户的ROI,持续追踪这个数据,然后当ROI超过100%的时候,你投入的成本就算是赚回来了。
当对比多个渠道流量的时候,ROI是关键的参考数据,另外,我们建议让cda数据分析师同时追踪每个队列里的用户留存率,比如次留、七日留存和月留存等。这些数据对于某个时间点对比流量来源是有用的,而实际上,如果这些用户的活跃时间不同,那么用它们来对比各个流量渠道的效率是不对的,
设定目标活动
向留存率这样数字最容易伪造,如果客户专注于这一点的话,比如说次日留存,那么流量渠道只需要只简单地在第二天登录应用或者写一个对应的工具进行人为刷留存。因此,增加额外的活动,这可以让你了解自己的用户是否有合理的动机。
这些活动可能代表了特殊的情况,但这不能是第一个关卡,也不是进入商店的入口,更不是点击菜单中最明显的元素。把这些活动对每个流量渠道按照以上数据进行对比,你就会发现哪个渠道带来用户留存率高、但却没有出现特定用户行为,如果经常出现最终状况,那么最好是放弃这个流量渠道。
对数据进行细化分析
有时候这些虚假流量很可能来自单一IP,或者在同一个小时内注册,亦或者来自同样的网站,如果数据分析师能够详细了解这些数据,特别是综合起来考虑,你就有很大的机会发现哪些渠道是作假的。
这不仅仅是对付虚假用户,如果你通过这个数据发现来自特定国家或者特定网站带来的用户没有任何作用,你还可以告诉自己的伙伴拒绝这样的渠道流量。
做一个评估流量的流程
总体来说,流量分析并不是一蹴而就的事情,尝试经常这么做:评估获得的流量并优化分析算法,设定每天和每周的流量评估程序。让你的专职人员不仅要每天重复这样的过程,还要在未来的N天之内都带来有质量的流量分析。
如果是一位数据分析师收集了一系列的数据作为分析,设定目标活动并根据几个标准细化流量分析,你可以让你的流量购买经理每个早上用半小时的时间来做。在统计学方法的帮助下,你甚至可以把这个监视系统应用到每个数据分析中,比如置信区间、三西格玛管理规则等等,这个方式可以帮助你通过数据的不同找出不正常的流量来源。
与可靠的合作伙伴合作,但不要害怕实验。
总的来说,流量获取可以比作一系列投资组合的形成,两者都是高报酬的,而且都有非常保守的衡量方式。一开始要和谷歌、Facebook或者已经有合作关系的可信的伙伴进行合作,有时候会有人给你更低的CPI,如果你有了比较稳定和可预测的流量来源,那么可以冒险尝试一下,因为新的合作关系有可能让你的流量购买更有效率。不过,要根据来源的不同而进行定义,最小化风险。
如果你经常评估流量获取的质量,不断地放弃表现不好的次级渠道,并且偶尔尝试新合作伙伴,那么你会慢慢地学会如何确定下个月的高质量用户数字以及你将为此付出多少预算。
给各个渠道设限
无论如何,你都不要忘记给每个合作伙伴设定限制,首先,你要为用户购买预算设置上限,其次,你要避免未经测试的合作伙伴突然向你索要大量的预算。
当然,这些限制根据不同的合作伙伴也要区别对待,对于信得过的渠道设置一定的比例。
从分析中去掉大R
大R指的就是欧美常说的‘鲸鱼用户’,也就是在游戏中消费最多的玩家。有时候很可能一个渠道的流量所带来的收入完全是由单个用户所创造的,但其他的用户付费转化率非常低,如果是这样的话,最好是确定问题,因为这种模式是不能持续的。
现在我们来解决这个案例:
这里有3个合作伙伴:A、B和C,我们给每个伙伴100美元的用户购买费用,A给我们带来的流量创造了15美元的收入,B则带来了20美元,C带来了25美元。那么,哪一个是更好的呢?我也想说是C,但真正的答案是,不知道。
在做一个决定之前,你需要弄清楚以下几点:
1.每个渠道带来的用户量是多少?专注于绝对数据,我们没有办法对比这些渠道的质量,我们需要相对数据,因此,了解用户数量是必要的。
2.每个渠道的CPI是多少?如果不知道购买成本,我们就没办法计算ROI,而且ROI是对比各个渠道的关键数据之一。
3.每个渠道的用户注册分别过去了多久?或许C的合作是一个月前开始的,而其他伙伴则是一周前,所以如果不计算同时间内的数据,也是不准确的。
4.即便是所有的伙伴都是同时开始的活动,那么这个时间足以体现出差别吗?比如说,如果只是过了两三天,那么A和B仍然有可能赶上甚至超过C。
5.在你分析的用户当中有大R用户吗?如果这25美元是一个用户带来的怎么办?其他绝大多数用户都从不付费怎么办?
我希望这篇文章可以对手游开发商们带来帮助,我们都需要买流量,所以了解如何避免过度开支是非常必要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22